PILOT'S OPERATING HANDBOOK
AND
FAA APPROVED
AIRPLANE FLIGHT MANUAL

MOONEY M20R

THIS HANDBOOK INCLUDES THE MATERIAL REQUIRED TO BE FURNISHED TO THE PILOT BY THE FEDERAL AVIATION REGULATIONS, AND CONSTITUTES THE FAA APPROVED AIRPLANE FLIGHT MANUAL.

THIS DOCUMENT MUST BE CARRIED IN THE AIRCRAFT AT ALL TIMES.

MOONEY AIRCRAFT CORPORATION
LOUIS SCHREINER FIELD
KERRVILLE, TEXAS 78028

SERIAL NUMBER

REGISTRATION NUMBER

FAA APPROVED:

Michele M. Oswley
Manager, Airplane Certification Office
FEDERAL AVIATION ADMINISTRATION
2601 Meacham Boulevard
Fort Worth, Texas 76137-0150

FAA APPROVED in Normal Category based on CAR PART 3 and applicable portions of FAR PART 23; applicable to Model M20R S/N listed above only;

ORIGINAL ISSUE- 6-94
Revision F 9-96
Revision G 3-00
POH/AFM NUMBER - 3600
CONGRATULATIONS

WELCOME TO MOONEY'S NEWEST DIMENSION IN SPEED, QUALITY AND ECONOMY. YOUR DECISION TO SELECT A MOONEY AIRCRAFT HAS PLACED YOU IN AN ELITE AND DISTINCTIVE CLASS OF AIRCRAFT OWNERS. WE HOPE YOU FIND YOUR MOONEY A UNIQUE FLYING EXPERIENCE, WHETHER FOR BUSINESS OR PLEASURE, THE MOST PROFITABLE EVER.

- NOTICE -

This manual is provided as an operating guide for the Mooney Model M20R. It is important that you — regardless of your previous experience — carefully read the handbook from cover to cover and review it frequently.

All information and illustrations in the manual are based on the latest product information available at the time of publication approval and all sections including attached supplements are mandatory for proper operation of the aircraft. The right is reserved to make changes at any time without notice. Every effort has been made to present the material in a clear and convenient manner to enable you to use the manual as a reference. Your cooperation in reporting presentation and content recommendations is solicited.

REVISIGN THE MANUAL

The "i" pages of this manual contain a "List of Effective Pages" containing a complete current listing of all pages i.e., Original or Revised. Also, in the lower right corner of the outlined portion, is a box which denotes the manual number and issue or revision of the manual. It will be advanced one letter, alphabetically, per revision. With each revision to the manual a new List of Effective Pages showing all applicable revisions with dates of approval and a "Log of Revisions" page(s), with only the latest Revision shown, will be provided to replace the previous ones. It is the operator's responsibility to ensure that this manual is current through the latest published revision.

This handbook will be kept current by Mooney Aircraft Corporation when the yellow information card in front of this handbook has been completed and mailed to:

Mooney Aircraft Corporation
Service Parts Department
Louis Schreiner Field,
Kerrville, TX., 78028.

ISSUED 6 - 94
INTRODUCTION

LIST OF EFFECTIVE PAGES

<table>
<thead>
<tr>
<th>Original</th>
<th>6-94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision A</td>
<td>7-94</td>
</tr>
<tr>
<td>Revision B</td>
<td>8-94</td>
</tr>
<tr>
<td>Revision C</td>
<td>9-94</td>
</tr>
<tr>
<td>Revision D</td>
<td>1-95</td>
</tr>
<tr>
<td>Revision E</td>
<td>9-95</td>
</tr>
<tr>
<td>Revision F</td>
<td>9-96</td>
</tr>
<tr>
<td>Revision G</td>
<td>3-00</td>
</tr>
</tbody>
</table>

Always destroy superseded pages when inserting revised pages.

CONGRATULATIONS

| i thru iv | G |
| v, vi | |

1-1, 1-2	ORIGINAL
1-3	F
1-4	C
1-5	ORIGINAL
1-6 thru 1-8	G
1-9, 1-10	ORIGINAL

2-1	G
2-2	
2-3, 2-4	B
2-5	G
2-6, 2-7	
2-8	
2-9, 2-10	
2-11, 2-12	
2-13	
2-14, 2-15	
2-16, 2-17	
2-18	

3-1 thru 3-4	ORIGINAL
3-5	G
3-6 thru 3-7	
3-8	
3-9, 3-10	G
3-11	
3-12	
3-13	
3-14, 3-15	
3-16	

4-1	
4-2 thru 4-4	ORIGINAL
4-5	F
4-6	
4-7, 4-8	E

POH/AFM NUMBER 3600 (G)

This POH/AFM effective beginning with M20R S/N 29-0001

ISSUED 6-94
LIST OF EFFECTIVE PAGES (con't.)

<table>
<thead>
<tr>
<th>Page Range</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-9 thru 4-12</td>
<td>F</td>
</tr>
<tr>
<td>4-13, 4-14</td>
<td>E</td>
</tr>
<tr>
<td>4-5, 4-16</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>5-1</td>
<td>C</td>
</tr>
<tr>
<td>5-2</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>5-3</td>
<td>A</td>
</tr>
<tr>
<td>5-4 thru 5-12</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>5-13</td>
<td>G</td>
</tr>
<tr>
<td>5-14 thru 5-18</td>
<td>C</td>
</tr>
<tr>
<td>5-19</td>
<td>E</td>
</tr>
<tr>
<td>5-20 thru 5-30</td>
<td>C</td>
</tr>
<tr>
<td>6-1 thru 6-6</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-7, 6-8</td>
<td>F</td>
</tr>
<tr>
<td>6-9</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-10</td>
<td>E</td>
</tr>
<tr>
<td>6-11</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-12</td>
<td>F</td>
</tr>
<tr>
<td>6-13, 6-14</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-15</td>
<td>G</td>
</tr>
<tr>
<td>6-16</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-17</td>
<td>G</td>
</tr>
<tr>
<td>6-18, 6-19</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-20 thru 6-22</td>
<td>G</td>
</tr>
<tr>
<td>6-23</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-24</td>
<td>F</td>
</tr>
<tr>
<td>6-25 thru 6-29</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>6-30</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>7-1, 7-2</td>
<td>G</td>
</tr>
<tr>
<td>7-3 thru 7-4</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>7-5 thru 7-30</td>
<td>G</td>
</tr>
<tr>
<td>8-1</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>8-2</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>8-3 thru 8-6</td>
<td>G</td>
</tr>
<tr>
<td>8-7</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>8-8 thru 8-10</td>
<td>A</td>
</tr>
<tr>
<td>9-1 through 9-4</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>(plus Applicable Supplements inserted)</td>
<td></td>
</tr>
<tr>
<td>10-1</td>
<td>D</td>
</tr>
<tr>
<td>10-2 thru 10-10</td>
<td>ORIGINAL</td>
</tr>
<tr>
<td>10-11</td>
<td>D</td>
</tr>
<tr>
<td>10-12</td>
<td>ORIGINAL</td>
</tr>
</tbody>
</table>

POH/AFM NUMBER - 3600 (G)

This POH/AFM effective beginning with M20R S/N 29-0001

ISSUED 6-94
LOG OF REVISIONS

<table>
<thead>
<tr>
<th>REVISION NUMBER</th>
<th>REVISED PAGES</th>
<th>DESCRIPTION OF REVISIONS</th>
<th>FAA APPROVED</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Title Page, LOEP, Log of Revisions, 1-6, 1-7, 1-8, 2-1, 2-3, 2-8, 3-5, 7-1, 7-2, 7-5 thru 7-3, 8-2</td>
<td>Revised Data</td>
<td>[Signature] 3/13/00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-4</td>
<td>Added Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-13, 6-15, 6-16, 6-17, 6-20, 6-21, 6-22, 6-25 thru 6-29</td>
<td>Revised Chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-11thru 2-15</td>
<td>Added Placard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The revised portions of affected pages are indicated by vertical black lines in the margin.
The revised portions of affected pages are indicted by vertical black lines in the margin.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>THREE VIEW</td>
</tr>
<tr>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>DESCRIPTIVE DATA</td>
</tr>
<tr>
<td>ENGINE</td>
</tr>
<tr>
<td>PROPELLER</td>
</tr>
<tr>
<td>FUEL</td>
</tr>
<tr>
<td>OIL</td>
</tr>
<tr>
<td>LANDING GEAR</td>
</tr>
<tr>
<td>MAXIMUM CERTIFICATED WEIGHTS</td>
</tr>
<tr>
<td>STANDARD AIRPLANE WEIGHTS</td>
</tr>
<tr>
<td>CABIN & ENTRY DIMENSIONS</td>
</tr>
<tr>
<td>BAGGAGE SPACE AND ENTRY DIMENSIONS</td>
</tr>
<tr>
<td>SPECIFIC LOADINGS</td>
</tr>
<tr>
<td>IDENTIFICATION PLATE</td>
</tr>
<tr>
<td>SYMBOLS, ABBREVIATIONS & TERMINOLOGY</td>
</tr>
<tr>
<td>GENERAL AIRSPEED TERMINOLOGY & SYMBOLS</td>
</tr>
<tr>
<td>ENGINE POWER TERMINOLOGY</td>
</tr>
<tr>
<td>AIRPLANE PERFORMANCE & FLIGHT PLANNING TERMINOLOGY</td>
</tr>
<tr>
<td>ENGINE CONTROLS & INSTRUMENTS TERMINOLOGY</td>
</tr>
<tr>
<td>METEOROLOGICAL TERMINOLOGY</td>
</tr>
<tr>
<td>WEIGHT & BALANCE TERMINOLOGY</td>
</tr>
<tr>
<td>MEASUREMENT CONVERSION TABLES</td>
</tr>
</tbody>
</table>

ISSUED 6 - 94
FIGURE 1 - 1 THREE VIEW - M20R

MOONEY M20R

SECTION I
GENERAL

Issued 6-94
SECTION I
GENERAL
FUEL

Minimum Fuel Grade (Color) 100 LL (Blue) or 100 Octane (Green)
Total Capacity 95 U.S. Gal. (359.6 liters)
Usable 89.0 U.S. Gal. (336.9 liters)

OIL

Oil Specification MHS-240 and as approved by TCM.
(Reference Engine Maintenance & Operators Manual)
All Temperatures
Above 30°F (-1°C) Ambient Air (S.L.) SAE 50
Below 50°F (10°C) Ambient Air (S.L.) SAE 30, 10W30
Total Oil Capacity 8 Qts. (7.57 liters)
Oil Filter Full Flow

Oil grades, specifications and changing recommendations are contained in SECTION VIII.

LANDING GEAR

TYPE: Electrically operated, fully retractable tricycle gear with rubber shock discs. The main wheels have hydraulically operated disc brakes. The nose wheel is fully steerable 11° left to 13° right of center.

Wheel Base 79 9/16 in. (198.91 cm)
Wheel Track 110 in. (279.4 cm)

Tire Size:
Nose 5.00 x 5 (6 ply)
Main 6.00 x 6 (6 ply)

Tire Pressure
Nose 49 PSI
Main 42 PSI

Minimum Turning Radius (No brakes applied)
Right 40 ft. (12.0 m)
Left 48 ft. (14.4 m)

MAXIMUM CERTIFICATED WEIGHTS

Gross Weight 3368 Lbs. (1528 Kg)
Maximum Landing Weight 3200 Lbs. (1452 Kg)
Baggage Area 120 Lbs. (54.4 Kg)
Rear Storage Area 10 Lbs. (4.5 Kg)
Cargo (Rear Seats Folded Down) 340 Lbs. (154.2 Kg)

STANDARD AIRPLANE WEIGHTS

Basic Empty Weight
Useful Load See Page 1-8

See SECTION VI for specific airplane weight (pg. 6-5).

1 - 4

REV. C 9 - 94
ISSUED 6 - 94
INTRODUCTION

This Operators Manual conforms to GAMA Specification No. 1 and includes both Manufacturers material and FAA APPROVED material required to be furnished to the Pilot by the applicable Federal Aviation Regulations. Section IX contains supplemental data supplied by Mooney Aircraft Corporation.

Section I contains information of general interest to the pilot. It also contains definitions of the terminology used in this Operators Manual.

This Pilot's Operating Handbook is not designed as a substitute for adequate and competent flight instruction, knowledge of current airworthiness directives, applicable federal air regulations or advisory circulars. It is not intended to be a guide for basic flight instruction or a training manual and should not be used for operational purposes unless kept in an up to date status.

All limitations, procedures, safety practices, servicing and maintenance requirements published in this POH/AFM are considered mandatory for the Continued Airworthiness of this airplane in a condition equal to that of its original manufacture.

DESCRIPTIVE DATA

ENGINE

Number of engines
Engine Manufacturer
Model
Recommended TBO
Type
Number of cylinders
Displacement
Bore
Stroke
Compression ratio

Teledyne Continental Motors (TCM) 1
IO-550-G(5)*
2000 Hours
Reciprocating, air cooled, fuel injected
6, Horizontally opposed
550 Cu. In. (9014 cc)
5.25 in. (13.3 cm)
4.25 in. (10.8 cm)
8.5 : 1

Fuel System

Type
Make
Fuel-Aviation Gasoline

Fuel Injection
TCM
100 octane - 100LL

Accessories

Magnetos
Ignition Harness
Spark Plugs
Oil Cooler
Alternator
Starter

Bendix - SSRN-25
Shielded/Braided
AC 273 (or equivalent) (18 m/m)
TCM Full Flow

26 Volt DC, 100 AMPS
24 volt DC

Ratings:

Maximum Takeoff Sea Level BHP/RPM

280/2500

PROPELLER

Number
Manufacturer
Model Number
Number of Blades
Diameter (1/2 in. cutoff allowed)
Type
Governor (McCauley)
Blade Angles @ 30.0 in. Sta.:
Low
High

1
McCauley
3A32C418/(G)-B2NRC-9 *
3
73 in. (185.4 cm)
Constant Speed
Hydraulically controlled by engine oil
16.1 degrees +/- 0.2 degrees
40 degrees +/- 0.5 degrees

* Refer to TCDS for engine/propeller configuration required.
MOONEY
M20R

SECTION I
GENERAL

CABIN AND ENTRY DIMENSIONS
Cabin Width (Maximum) 43.5 In. (110.5 cm)
Cabin Length (Maximum) 126 In. (315 cm)
Cabin Height (Maximum) 44.5 In. (112.3 cm)
Enter Width (Minimum) 29.0 In. (73.4 cm)
Enter Height (Minimum) 35.0 In. (88.9 cm)

BAGGAGE SPACE AND ENTRY DIMENSIONS
Compartment Width 24 In. (60.9 cm)
Compartment Length 43 In. (109.2 cm)
Compartment Height 35 In. (88.9 cm)
Compartment Volume 20.9 cu. ft. (592 cu. m)
Cargo Area (with rear seat folded down) 38.6 cu. ft. (1.09 cu. m)
Enter Height (Minimum) 20.5 In. (52.1 cm)
Enter Width 17.0 In. (43.2 cm)
Ground to Bottom of Sill 46.0 In. (116.8 cm)

SPECIFIC LOADINGS
Wing Loading - @ Maximum Gross Weight 19.26 lbs./sq. ft. (94 kg/sq. m)
Power Loading - @ Maximum Gross Weight 12.02 lbs./HP (5.46 kg/HP)

IDENTIFICATION PLATE
All correspondence regarding your airplane should include the Serial Number as depicted on the identification plate. The identification plate is located on the left hand side, aft end of the tail cone, below the horizontal stabilizer leading edge. The aircraft Serial Number and type certificate are shown.

SYMBOLES, ABBREVIATIONS & TERMINOLOGY

GENERAL AIRSPEED TERMINOLOGY & SYMBOLS

GS GROUND SPEED - Speed of an airplane relative to the ground.

KCAS KNOTS CALIBRATED AIRSPEED - The indicated speed of an aircraft, corrected for position and instrument error. Calibrated airspeed is equal to true airspeed in standard atmosphere at sea level.

KIAS KNOTS INDICATED AIRSPEED - The speed of an aircraft as shown on its airspeed indicator. IAS values published in this handbook assume zero instrument error.

KTAS KNOTS TRUE AIRSPEED - The airspeed of an airplane relative to undisturbed air which is the KCAS corrected for altitude and temperature.

\(V_a \) MANEUVERING SPEED - The maximum speed at which application of full available aerodynamic control will not overstress the airplane.

\(V_{fe} \) MAXIMUM FLAP EXTENDED SPEED - The highest speed permissible with wing flaps in a prescribed extended position.

\(V_{le} \) MAXIMUM LANDING GEAR EXTENDED SPEED - The maximum speed at which an aircraft can be safely flown with the landing gear extended.
SECTION I
GENERAL

GENERAL AIRSPEED TERMINOLOGY & SYMBOLS (con't.)

V_{lo} MAXIMUM LANDING GEAR OPERATING SPEED - The maximum speed at which the landing gear can be safely extended or retracted.

V_{ne} NEVER EXCEED SPEED - The speed limit that may not be exceeded at any time.

V_{no} MAXIMUM STRUCTURAL CRUISING SPEED - The speed that should not be exceeded except in smooth air and then only with caution.

V_{s} STALLING SPEED - The minimum steady flight speed at which the airplane is controllable.

V_{so} STALLING SPEED - The minimum steady flight speed at which the airplane is controllable in the landing configuration.

V_{x} BEST ANGLE-OF-CLIMB SPEED - The airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance.

V_{y} BEST RATE-OF-CLIMB SPEED - The airspeed which delivers the greatest gain in altitude in the shortest possible time with gear and flaps up.

ENGINE POWER TERMINOLOGY

BHP BRAKE HORSEPOWER - Power developed by the engine.

CHT CYLINDER HEAD TEMPERATURE - Operating temperature of engine cylinder(s) being monitored by sensor unit. Expressed in °F.

EGT EXHAUST GAS TEMPERATURE - The exhaust gas temperature measured in the exhaust pipe manifold. Expressed in °F.

MCP MAXIMUM CONTINUOUS POWER - The maximum power for takeoff, normal, abnormal or emergency operations.

MP MANIFOLD PRESSURE - Pressure measured in the engine's induction system and expressed in inches of mercury (Hg).

RPM REVOLUTIONS PER MINUTE - Engine speed.

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

Demonstrated Crosswind Velocity The velocity of the crosswind component for which adequate control of the airplane during takeoff and landing test was actually demonstrated during certification. The value shown is not considered to be limiting.

g Acceleration due to gravity.

Service Ceiling The maximum altitude at which aircraft at gross weight has the capability of climbing at the rate of 100 ft/min.
MOONEY
M20R

SECTION I
GENERAL

ENGINE CONTROLS & INSTRUMENTS TERMINOLOGY

Propeller Control
The control used to select engine speed.

Throttle Control
The control used to select engine power by controlling MP.

Mixture Control
Provides a mechanical linkage to the fuel injector mixture control to control the size of the fuel feed aperture, and therefore the air/fuel mixture. It is the primary method to shut the engine down.

CHT Gauge
Cylinder head temperature indicator used to determine that engine operating temperature is within manufacturers specifications.

Tachometer
An instrument that indicates rotational speed of the engine. The speed is shown as propeller revolutions per minute (RPM).

Propeller Governor
The device that regulates RPM of the engine/propeller by increasing or decreasing the propeller pitch, through a pitch change mechanism in the propeller hub.

METEOROLOGICAL TERMINOLOGY

AGL
Above ground level.

Density Altitude
Altitude as determined by pressure altitude and existing ambient temperature. In standard atmosphere (ISA) density and pressure altitude are equal. For a given pressure altitude, the higher the temperature, the higher the density altitude.

Indicated Altitude
The altitude actually read from an altimeter when, and only when the barometric subscale (Kollsman window) has been set to Station Pressure.

ISA
INTERNATIONAL STANDARD ATMOSPHERE assumes that (1) The air is a dry perfect gas; (2) The temperature at sea level is 15 degrees Celsius (59°F); (3) The pressure at sea level is 29.92 inches Hg (1013.2 mb); (4) The temperature gradient from sea level to the altitude at which the temperature is -56.5°C (-69.7°F) is -0.00198°C (-0.003564°F) per foot.

OAT
OUTSIDE AIR TEMPERATURE - The free air static temperature, obtained either from inflight temperature indications or ground meteorological sources. It is expressed in °C.

Pressure Altitude
The indicated altitude when Kollsman window is set to 29.92 in. Hg or 1013.2 MB. In this handbook, altimeter instrument errors are assumed to be zero.

Station Pressure
Actual atmospheric pressure at field elevation.

WEIGHT AND BALANCE TERMINOLOGY

Arm
The horizontal distance from the reference datum to the center of gravity (C.G.) of an item.

Basic Empty Weight
The actual weight of the airplane and includes all operating equipment (including optional equipment) that has a fixed location and is actually installed in the aircraft. It includes the weight of unusable fuel and full oil.

Center of Gravity (C.G.)
The point at which an airplane would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.
WEIGHT AND BALANCE TERMINOLOGY (con't.)

C.G. Arm The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.
C.G. in % MAC Center of Gravity expressed in percent of mean aerodynamic chord (MAC).
C.G. Limits The extreme center of gravity locations within which the airplane must be operated at a given weight.
MAC Mean Aerodynamic Chord.
Maximum Weight The maximum authorized weight of the aircraft and its contents as listed in the aircraft specifications.
Maximum Landing Weight The maximum authorized weight of the aircraft and its contents when a normal landing is to be made.
Moment The product of the weight of an item multiplied by its arm.
(Moment divided by a constant is used to simplify balance calculations by reducing the number of digits.)
Reference Datum An imaginary vertical plane from which all horizontal distances are measured for balance purposes.
Station A location along the airplane fuselage usually given in terms of distance from the reference datum.
Tare The weight of chocks, blocks, stands, etc. used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to obtain the actual (net) airplane weight.
Usable Fuel Fuel available for aircraft engine combustion.
Usable Load The basic empty weight subtracted from the maximum weight of the aircraft. This load consists of the pilot, crew (if applicable), useable fuel, passengers, and baggage.

MEASUREMENT CONVERSION TABLES

LENGTH

<table>
<thead>
<tr>
<th>U. S. Customary Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 inch</td>
<td>2.54 centimeters</td>
</tr>
<tr>
<td>1 foot</td>
<td>0.3048 meter</td>
</tr>
<tr>
<td>1 yard</td>
<td>0.9144 meter</td>
</tr>
<tr>
<td>1 mile (statute, land)</td>
<td>1, 609 meters</td>
</tr>
<tr>
<td>1 mile (nautical, international)</td>
<td>1, 852 meters</td>
</tr>
</tbody>
</table>

AREA

<table>
<thead>
<tr>
<th>U. S. Customary Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 square inch</td>
<td>6.4516 sq. centimeters</td>
</tr>
<tr>
<td>1 square foot</td>
<td>929 sq. centimeters</td>
</tr>
<tr>
<td>1 square yard</td>
<td>0.836 sq. meter</td>
</tr>
</tbody>
</table>
VOLUME OR CAPACITY

U.S. Customary Unit

<table>
<thead>
<tr>
<th>Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cubic inch</td>
<td>16.39 cubic centimeters</td>
</tr>
<tr>
<td>1 cubic foot</td>
<td>0.028 cubic meter</td>
</tr>
<tr>
<td>1 cubic yard</td>
<td>0.765 cubic meter</td>
</tr>
</tbody>
</table>

U.S. Customary Liquid Measure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fluid ounce</td>
<td>29.573 milliliters</td>
</tr>
<tr>
<td>1 pint</td>
<td>0.473 liter</td>
</tr>
<tr>
<td>1 quart</td>
<td>0.946 liter</td>
</tr>
<tr>
<td>1 gallon</td>
<td>3.785 liters</td>
</tr>
</tbody>
</table>

U.S. Customary Dry Measure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pint</td>
<td>0.551 liter</td>
</tr>
<tr>
<td>1 quart</td>
<td>1.101 liters</td>
</tr>
</tbody>
</table>

British Imperial Liquid and Dry Measure

<table>
<thead>
<tr>
<th>Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fluid ounce</td>
<td>28.412 milliliters</td>
</tr>
<tr>
<td>1 pint</td>
<td>568.26 milliliters</td>
</tr>
<tr>
<td>1 quart</td>
<td>1.136 liters</td>
</tr>
<tr>
<td>1 gallon</td>
<td>4.546 liters</td>
</tr>
</tbody>
</table>

WEIGHT

U.S. Customary Unit (Avoirdupois)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 grain</td>
<td>64.79891 milligrams</td>
</tr>
<tr>
<td>1 dram</td>
<td>1.772 grams</td>
</tr>
<tr>
<td>1 ounce</td>
<td>28.350 grams</td>
</tr>
<tr>
<td>1 pound</td>
<td>453.6 grams</td>
</tr>
</tbody>
</table>

PRESSURE

<table>
<thead>
<tr>
<th>Unit</th>
<th>Metric Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 PSIG</td>
<td>6.895 KPA</td>
</tr>
<tr>
<td>1 Inch Hg</td>
<td>3.388 KPA</td>
</tr>
<tr>
<td>1 Inch Hg</td>
<td>25.40 mm Hg</td>
</tr>
</tbody>
</table>
COMMON CONVERSIONS

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Equivalent Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pound/square foot</td>
<td>0.488 kg/meter square</td>
</tr>
<tr>
<td>1 pound/sq. inch</td>
<td>0.4538 kg/HP</td>
</tr>
<tr>
<td>1 Pound/HP</td>
<td>2.036 inch Hg.</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2-2</td>
</tr>
<tr>
<td>NOISE LIMITS</td>
<td>2-2</td>
</tr>
<tr>
<td>AIRSPEED LIMITATIONS</td>
<td>2-3</td>
</tr>
<tr>
<td>AIRSPEED INDICATOR MARKINGS</td>
<td>2-4</td>
</tr>
<tr>
<td>POWER PLANT LIMITATIONS</td>
<td>2-5</td>
</tr>
<tr>
<td>POWER PLANT INSTRUMENT MARKINGS</td>
<td>2-6</td>
</tr>
<tr>
<td>FUEL LIMITATIONS</td>
<td>2-7</td>
</tr>
<tr>
<td>WEIGHT LIMITS</td>
<td>2-7</td>
</tr>
<tr>
<td>CENTER OF GRAVITY (GEAR DOWN)</td>
<td>2-7</td>
</tr>
<tr>
<td>MANEUVER LIMITS</td>
<td>2-8</td>
</tr>
<tr>
<td>FLIGHT LOAD FACTOR LIMITS</td>
<td>2-8</td>
</tr>
<tr>
<td>FLIGHT CREW</td>
<td>2-8</td>
</tr>
<tr>
<td>OPERATING LIMITATIONS</td>
<td>2-8</td>
</tr>
<tr>
<td>OXYGEN SYSTEM LIMITATIONS</td>
<td>2-8</td>
</tr>
<tr>
<td>KINDS OF OPERATION LIMITS</td>
<td>2-8</td>
</tr>
<tr>
<td>KINDS OF OPERATION EQUIPMENT LIST</td>
<td>2-8</td>
</tr>
<tr>
<td>DECALS & PLACARDS</td>
<td>2-11</td>
</tr>
<tr>
<td>CABIN INTERIOR</td>
<td>2-11</td>
</tr>
<tr>
<td>FUSELAGE INTERIOR</td>
<td>2-15</td>
</tr>
<tr>
<td>EXTERIOR</td>
<td>2-16</td>
</tr>
</tbody>
</table>
SECTION II includes the mandatory operating limitations, instrument markings, and basic placards necessary for the safe operation of the airplane, its engine, standard systems and standard equipment.

The limitations included in this section have been approved by the Federal Aviation Administration.

When applicable, limitations associated with optional systems or equipment such as autopilots are included in SECTION IX.

NOTE

The airspeeds listed in the Airspeed Limitations chart (Figure 2-1) and the Airspeed Indicator Markings chart Figure 2-2) are based on Airspeed Calibration data shown in SECTION V with the normal static source. If the alternate static source is being used, ample margins should be observed to allow for the airspeed calibration variations between the normal and alternate static sources as shown in SECTION V.

Your Mooney is certificated under FAA Type Certificate No. 2A3 as a Mooney M20R.

NOISE LIMITS

The certificated noise level for the Mooney M20R at 3368 lbs. (1528 Kg.) maximum weight is 72.6 dB(A). No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into, or out of, any airport.
Airspeed limitations and their operational significance are shown in Figure 2-1. This calibration assumes zero instrument error.

<table>
<thead>
<tr>
<th>V / SPEED</th>
<th>KCAS/KIAS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>NE</sub></td>
<td>Never Exceed Speed</td>
<td>196/195</td>
</tr>
<tr>
<td>V<sub>NO</sub></td>
<td>Maximum Structural Cruising Speed</td>
<td>175/174</td>
</tr>
<tr>
<td>V<sub>A</sub></td>
<td>Maneuvering Speed at:</td>
<td></td>
</tr>
<tr>
<td>lbs. /Kg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2232/1012</td>
<td>104/103</td>
<td>Do not make full or abrupt control movement above this speed.</td>
</tr>
<tr>
<td>2430/1102</td>
<td>108/108</td>
<td></td>
</tr>
<tr>
<td>3300/1497</td>
<td>127/126</td>
<td></td>
</tr>
<tr>
<td>3368/1528</td>
<td>128/127</td>
<td></td>
</tr>
<tr>
<td>V<sub>FE</sub></td>
<td>Maximum Flap Extended Speed</td>
<td>111/110</td>
</tr>
<tr>
<td>V<sub>LE</sub></td>
<td>Maximum Landing Gear Extended Speed</td>
<td>166/165</td>
</tr>
<tr>
<td>V<sub>LO</sub> (EXT)</td>
<td>Max. Speed for Gear Extension</td>
<td>141/140</td>
</tr>
<tr>
<td>V<sub>LO</sub> (RET)</td>
<td>Max. Speed for Gear Retraction</td>
<td>107/106</td>
</tr>
<tr>
<td></td>
<td>Maximum Pilot Window Open Speed</td>
<td>133/132</td>
</tr>
</tbody>
</table>

FIGURE 2-1 AIRSPEED LIMITATIONS
AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings, their color code and operational significance are shown in Figure 2-2.

<table>
<thead>
<tr>
<th>MARKING</th>
<th>IAS VALUE or RANGE (KIAS)</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Arc (Flap Operating Range)</td>
<td>59-110 KIAS</td>
<td>Lower limit is maximum weight V_{so} in landing configuration. Upper limit is maximum speed permissible with flaps extended.</td>
</tr>
<tr>
<td>Green Arc (Normal Operating Range)</td>
<td>66-174 KIAS</td>
<td>Lower limit is maximum weight V_{s} with flaps retracted. Upper limit is maximum structural cruising speed.</td>
</tr>
<tr>
<td>Yellow Arc (Caution Range)</td>
<td>174-195 KIAS</td>
<td>Operations must be conducted with caution and only in smooth air.</td>
</tr>
<tr>
<td>Radial Red Line</td>
<td>195 KIAS</td>
<td>Maximum speed for all operations.</td>
</tr>
</tbody>
</table>

FIGURE 2-2 AIRSPEED INDICATOR MARKINGS
Number of Engines .. 1
Engine Manufacturer Teledyne Continental Motors (TCM)
Engine Model Number IO-550-G(5) *

Engine Operating Limits for Takeoff and Continuous Operations:

- Maximum Continuous Power 280 BHP
- Maximum Continuous RPM 2500 RPM
- Transient RPM Limit .. 2600 RPM
- Maximum Cylinder Head Temperature 460°F (237.7°C)
- Maximum Oil Temperature 240°F (115°C)
- Minimum Oil Temperature-Takeoff 75°F (24°C)
- Recm'ded Cruising Temperature 170°F-200°F (76°C-93°C)
- Oil Pressure
 - Normal Operating .. 30-60 PSI
 - Minimum (IDLE ONLY) 10 PSI

- Oil Specification ... MHS-24(), MHS-25() and TCM Approved oils
- Fuel Grade (Color) .. 100LL (Blue)** or 100 octane (Green) **
- Number of Propellers 1
- Propeller Manufacturer McCauley
- Propeller/Blade Model Number 3A32C418/(G)-82NRC-9 *

- Number of Blades .. 3
- Propeller Diameter: McCauley
 - Min .. 72.5 In. (184.2 cm)
 - Max .. 73 In. (185.4 cm)

- McCauley - Propeller Blade Angles @ 30.0 In. sta.:
 - Low .. 16.1 Degrees + /- 0.2 Degrees
 - High .. 40.0 Degrees + /- 0.5 Degrees

- Propeller Operating Limits (McCauley) 2500 RPM

* Refer to TCDS for engine/propeller configuration required.

** 100LL fuel is calibrated at 5.82 lb/gal(.69 Kg/liter)
100 octane fuel is calibrated at 6.0 lb/gal. (.72 Kg/liter)
SECTION II
LIMITATIONS

MOONEY M20R

POWER PLANT INSTRUMENT MARKINGS

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>REDLINE MINIMUM LIMIT</th>
<th>GREEN ARC NORMAL OPERATING</th>
<th>YELLOW ARC</th>
<th>REDLINE MAXIMUM LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachometer</td>
<td>600 RPM</td>
<td>2200-2500 RPM</td>
<td></td>
<td>2500 RPM</td>
</tr>
<tr>
<td></td>
<td>No Redline</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Head Temperature</td>
<td>250-420°F (121-215.5°C)</td>
<td>420-460°F (215.5-237.7°C)</td>
<td>460°F (237.7°C)</td>
<td></td>
</tr>
<tr>
<td>Oil Temperature</td>
<td>No Redline</td>
<td>170-220°F (76.6-104°C)</td>
<td>100-170°F (37.7-76.6°C)</td>
<td>240°F (115.5°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220°F - 240°F (104° - 115.5°C)</td>
<td></td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>10.0 PSI (IDLE ONLY)</td>
<td>30-60 PSI</td>
<td>10-30 PSI</td>
<td>100 PSI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60-100 PSI</td>
<td></td>
</tr>
<tr>
<td>Exhaust Gas Temperature</td>
<td>1400-1450°F (760-788°C)</td>
<td>(BLUE ARC = recommended climb)</td>
<td>1650°F (899°C)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

Refer to TCM Engine Maintenance and Operators Manual Section on Engine Specifications and Operating Limits for recommended cruise power and temperature limitations.

FIGURE 2 - 3 POWER PLANT INSTRUMENT MARKINGS
FUEL LIMITATIONS

WARNING

Takeoff maneuvers when the selected fuel tank contains less than 12 gallons (45.4 liters) of fuel, have not been demonstrated.

NOTE

Each fuel quantity gauge is calibrated to read zero (RED LINE) only in coordinated level flight when remaining quantity of fuel can no longer be safely used.

NOTE

An optional, visual fuel quantity gauge is installed on top of each tank and is to be used as a reference for refueling tanks only.

Standard Tanks (2) ... 47.5 U.S. Gal. each (179.8 liters)
Total Fuel .. 95 U.S. Gal. (359.6 liters)
Usable Fuel: .. 89 U.S. Gal. (336.8 liters)
Usable Fuel: .. 6 U.S. Gal. (22.7 liters)

Fuel Grade (and color): 100LL (low lead) (blue) or 100 octane (green) is approved.

CAUTION

To reduce possibility of ice formation within the aircraft or engine fuel system it is permissible to add ISO-PROPYL alcohol to the fuel supply in quantities NOT TO EXCEED 3% of total fuel volume per tank. DO NOT add other additives to fuel system due to potential deteriorating effects within the fuel system.

WEIGHT LIMITS

Maximum Weight - Takeoff 3368 lb. (1528 Kg.)
Maximum Weight - Landing 3200 lb. (1452 Kg)
Maximum Weight in Baggage Compartment 120 lb.
Maximum Weight in Rear Storage Area 10 lb.
Maximum Weight in Cargo Area (Rear seats folded down) . 340 lbs.

Datum (station zero) is 13 inches (32.5 cm) aft of the center line of the nose gear trunion attach pivot bolts.

FAA APPROVED AIRPLANE FLIGHT MANUAL

ISSUED 6 - 94
This airplane must be operated as a Normal Category airplane. Aerobatic maneuvers, including spins, are prohibited.

| NOTE |
Up to 500 foot altitude loss may occur during stalls at maximum weight.

FLIGHT LOAD FACTOR LIMITS

- **Maximum Positive Load Factor**
 - Flaps Up: +3.8 g.
 - Flaps Down (33 Degrees): +2.0 g.
- **Maximum Negative Load Factor**
 - Flaps Up: -1.5 g.
 - Flaps Down: 0.0 g.

FLIGHT CREW

- Pilot: One
- Maximum passenger seating configuration: Three

OPERATING LIMITATIONS

When aircraft is not equipped with an approved oxygen system and flight operations above 12,000 ft. are desired, this airplane must be:
1. Equipped with supplemental oxygen in accordance with FAR 23.1441,
2. Operate in accordance with FAR 91.32 and (3) equipped with avionics in accordance with FAR 91 or FAR 135.

ALTERNATOR OPERATING LIMITATIONS is 94 AMPS.

KINDS OF OPERATION LIMITS

This is a Normal Category airplane certified for VFR/IFR day or night operations when the required equipment is installed and operational as specified in the KINDS OF OPERATION EQUIPMENT LIST and the applicable operating rules.

Optional equipment installations may not be required to be operational.

The pilot must determine that the applicable operating rules requirements for each kind of operation are met.

OPERATIONS IN KNOWN ICING CONDITIONS ARE PROHIBITED.

Autopilot Limitations - See SECTION IX.

KINDS OF OPERATION EQUIPMENT LIST

The following equipment was approved during Type Certification and must be installed and operable for each kind of operation as specified.

| NOTE |
The KINDS OF OPERATION EQUIPMENT list may not include all the equipment as required by applicable operating rules.

SEE NEXT PAGE FOR LISTINGS.
KINDS OF OPERATION EQUIPMENT LIST

<table>
<thead>
<tr>
<th>System or Component</th>
<th>VFR Day</th>
<th>VFR Night</th>
<th>IFR Day</th>
<th>IFR Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspeed Indicator</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altimeter, Sensitive</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Direction Indicator</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manifold Pressure Gauge</td>
<td></td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachometer</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Quantity Indicator</td>
<td>2 2 2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Pressure Indicator</td>
<td></td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Pressure Indicator</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Temperature Indicator</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Head Temperature Indicator</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust Gas Temperature Indicator</td>
<td></td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammeter</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternator</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing Gear Position Indicator</td>
<td>2 2 2 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seat Belt & Shoulder Harness</td>
<td></td>
<td></td>
<td>1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>For Each Occupant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen Mask For Each Occupant</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position Lights</td>
<td>3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strobe Lights (Anti-Collision)</td>
<td>3 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Equipment must be installed and operable for all operations.
** If inoperative for unoccupied seat(s), seat(s) must be placarded: "DO NOT OCCUPY"
*** Only required when the operating rules require use of oxygen.
Kinds of Operation Equipment List (con't.)

<table>
<thead>
<tr>
<th>System or Component (con't.)</th>
<th>VFR Day *</th>
<th>VFR Night</th>
<th>IFR Day</th>
<th>IFR Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYRO-HORIZON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECTIONAL GYRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURN COORDINATOR or TURN & BANK INDICATOR</td>
<td></td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING LIGHT ****</td>
<td></td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTRUMENT LIGHTS (INTERNAL or GLARESHIELD)</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOCK (WITH SWEEP SECOND HAND or DIGITAL)</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNICATION SYSTEM</td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>NAVIGATION SYSTEM (APPROPRIATE TO FACILITIES BEING USED)</td>
<td>1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BATTERY</td>
<td></td>
<td>2 2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VACUUM SYSTEM/INDICATOR</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>FUEL BOOST PUMP</td>
<td></td>
<td>1 1 1 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PILOT'S OPERATING HANDBOOK & AIRPLANE FLIGHT MANUAL</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PITOT, Heated ****</td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>OAT GAUGE ****</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>VSI ****</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>ALTERNATE STATIC SOURCE ****</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td>STAND-BY VACUUM SYSTEM ****</td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
</tbody>
</table>

* Equipment must be installed and operable for all operations.
**** When required by the appropriate regulations.

AIRPLANE FLIGHT MANUAL 2-10
FAA APPROVED ISSUED 6-94
CABIN INTERIOR

The following placards are relevant to proper operation of the airplane and must be installed inside the cabin at the locations specified.

OPERATING LIMITATIONS

The warning placards and placards installed in this airplane contain operating limitations which must be complied with when operating this airplane in the normal category. This airplane is certified for day and night VFR/FR operation when the required equipment is installed and operational. Flight into known icing conditions is prohibited. No aerobatic maneuvers, including spins, are approved. Other operating limitations which must be complied with when operating this airplane in this category are contained in the airplane flight manual. Maneuvering speed (3388 lbs), 127 KIAS (2600 lbs), 111 KIAS.

EMERGENCY MANUAL GEAR EXTENSION

1. Pull landing gear actuator circuit breaker.
2. Put gear switch in gear down position.
3. Push release tab forward and lift up red handle.
4. Pull T-handle straight up (12 to 20 inches).
5. Allow T-handle to return to original position.
6. Repeat until gear down light goes on (12 to 20 pulls). If total electrical failure—see mechanical indicator.

CAUTION

1. Turn off strobe lights when taking near other ace or when flying in fog or in clouds. STD position lights must be for all night operations.
2. In case of fire turn off cabin heat.
3. Do not screw vernier controls closer than 1/8 from nut face.

CHECK LIST

<table>
<thead>
<tr>
<th>Controls</th>
<th>Run-Up</th>
<th>Door</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Prop</td>
<td>Window</td>
</tr>
<tr>
<td>Instruments</td>
<td>Wing Flaps</td>
<td>Alt Air</td>
</tr>
<tr>
<td>Trim</td>
<td>Seat Latch</td>
<td>Park Brake</td>
</tr>
<tr>
<td>Belt Harness</td>
<td>Mixture</td>
<td></td>
</tr>
</tbody>
</table>

CONDUCT RUDDER AND ELEV TRIM CHECK PRIOR TO FLIGHT, SEE PILOT'S OPERATING HANDBOOK

L/D/G

<table>
<thead>
<tr>
<th>Belt/Harness</th>
<th>Gear</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Wing Flaps</td>
<td>Prop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Park Brake</td>
</tr>
</tbody>
</table>

ON CONSOLE

N285M

UPPER INSTRUMENT PANEL-PILOT SIDE

FAA APPROVED
ISSUED 6 - 94
REV. G
AIRPLANE FLIGHT MANUAL
2 - 11
SECTION II LIMITATIONS

CONSOLE ABOVE & BELOW SWITCH

PILOT'S L/H PANEL, FWD OF ARM REST

WARNING:

DO NOT EXCEED 170 LBS (77.1 Kg) ON THIS SEAT BACK.
SEE AIRCRAFT LOADING SCHEDULE DATA FOR BAGGAGE COMPARTMENT ALLOWABLE

FWD END OF REAR SEAT BOTTOM STRUCTURE

ON RADIO PANEL, ADJACENT TO ELT SWITCH (OPTIONAL)

CAUTION

ABSENCE OF ELT LIGHT DURING FIRST 3 SECONDS OF TEST INDICATES POSSIBLE G-SWITCH FAILURE

MIKE PHONE

BELOW INSTRUMENT PANEL-EACH SIDE

ABOVE EACH FUEL QTY. GAUGE ON BEZEL (G/N 29-0170 THRU 29-0199)

44.5 GAL USEABLE

INSTRUMENT/RADIO PANEL (VARIAGES W/ INSTALLED EQUIP.)

(TYPICAL—PLACARDS WILL VARY WITH AIRCRAFT CONFIGURATION)

AIRPLANE FLIGHT MANUAL

REV. G

FAA APPROVED

ISSUED 6 - 94
SECTION II
LIMITATIONS

WARNING:
DO NOT EXCEED 10 LBS (4.5 Kg) IN THIS COMPARTMENT
USE FOR STOWAGE OF LIGHT SOFT ARTICLES ONLY
FOR BAGGAGE COMPARTMENT ALLOWABLE

TOP OF BAGGAGE DOOR JAMB

WARNING:
DO NOT EXCEED 120 LBS
(54.4 Kg) IN THIS COMPARTMENT
SEE AIRCRAFT LOADING SCHEDULE DATA
FOR BAGGAGE COMPARTMENT ALLOWABLE

INSTRUMENT PANEL

SPEEDBRAKE EQUIPPED: FOR OPERATING INSTRUCTIONS
AND LIMITATIONS SEE FAA APPROVED AFM SUPPLEMENT
OR PILOT'S OPERATING HANDBOOK.

ON UPPER INSTRUMENT PANEL

NXXXXX
FLOORBOARD - BETWEEN SEATS

BETWEEN SEATS - ON
EMERGENCY GEAR RELEASE
EXTENSION HANDLE

PUSH TO RELEASE

LIGHT SWITCH
BAGGAGE DOOR FRAME

RT. RADIO PNL.
ADJACENT TO AUX.

FLOORBOARD - FWD OF
CO-PILOT SEAT---->

14 VOLTS
3 AMPS MAX.
5 A INTERMITTENT

AIRPLANE FLIGHT MANUAL
2 - 14
REV. G

FAA APPROVED
ISSUED 6 - 94
CAUTION
THIS DOOR SHALL BE REMOVED AND STOWED WHEN FIELD TEMPERATURES EXCEED 30°F (-1°C)
ON KIT SLIDING DOOR AT OIL COOLER. IF KIT INSTALLED

CAUTION
WINTERIZATION KIT INSTALLED WHEN OPERATING AT TEMPERATURES ABOVE 30°F, (-1°C), REMOVE OIL COOLER DOOR. ON OIL FILLER DOOR IF KIT INSTALLED

MAINTAIN
LEVEL HERE
-6011

28 VOLTS ONLY
-6080

USE AVIATORS OXYGEN ONLY
SEE PILOT'S OPERATING HANDBOOK FOR FILLING PressURES
(OPTIONAL) -4050

INSIDE ENGINE OIL FILLER DOOR

ENGINE OIL
OIL INSTALLED IN THIS ENGINE IS:

NEXT OIL CHANGE IS DUE AT HRS.
(USE GREASE PENCIL) TACH TIME

-6041

FAA APPROVED
ISSUED 6 - 94

AIRPLANE FLIGHT MANUAL
REV. G 2 - 15

HYDRAULIC OIL RESERVOIR

BACKSIDE OF AUX. PWR. RECEPTACLE DOOR

INSIDE OXYGEN FILLER DOOR

ON BATTERY ACCESS PANELS L/H & R/H

BOTH BATTERIES MUST BE INSTALLED FOR FLIGHT

-6060
The following placards must be installed on the exterior of the aircraft at the locations specified.

NO STEP
-6000

UNDERSIDE OF WING (2 PLCS)
& AFT OF L/H COWL FLAP (1PLC)

HOIST POINT
-6002

DO NOT PUSH
-6001

UNDER TAILCONE
AFT OF WING T/E

STATIC DRAIN
-6024

PITOT DRAIN
-6026

UNDER LEFT WING L/E
NEAR FUSELAGE

FUEL DRAIN
-6028

UNDER WING NEAR
SUMP DRAINS

GASCOULATOR DRAIN
-6030

UNDER FUSELAGE RT. SIDE
AFT OF NOSE WHEEL WELL
ON MAIN LDG GEAR DOOR
TIRE PRESSURE 42 PSI (2.95 Kg/cm²)

TIRE PRESSURE 49 PSI (3.44 Kg/cm²)
ON NOSE LANDING GEAR DOOR

TOWING LIMITS
ON NOSE LANDING GEAR LEG ASSY

WARNING
DO NOT EXCEED TOWING LIMITS

MAGNETIC AZIMUTH TRANSMITTER
LWR L/H WING PANEL OUT/BD OF HOIST PT.
LOCATED INSIDE THIS INSPECTION COVER. USE ONLY NON-MAGNETIC SCREWS FOR COVER INSTALLATION.

FUEL—100(GREEN) OR 100LL(BLUE) MIN OCT
44.5 U.S. GAL USABLE
168.5 LITERS USABLE
ON BOTH FUEL FILLER CAPS

FAA APPROVED
ISSUED 6 - 94

REV A 7 - 94 AIRPLANE FLIGHT MANUAL 2 - 17
BLANK
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>3-3</td>
</tr>
<tr>
<td>AIRSPEEDS FOR EMERGENCY OPERATIONS</td>
<td>3-4</td>
</tr>
<tr>
<td>ANNUNCIATOR PANEL WARNING LIGHTS</td>
<td>3-5</td>
</tr>
<tr>
<td>ENGINE</td>
<td>3-6</td>
</tr>
<tr>
<td>POWER LOSS - DURING TAKEOFF ROLL</td>
<td>3-6</td>
</tr>
<tr>
<td>POWER LOSS - AFTER LIFTOFF</td>
<td>3-6</td>
</tr>
<tr>
<td>POWER LOSS - IN FLIGHT (RE-START PROCEDURES)</td>
<td>3-6</td>
</tr>
<tr>
<td>POWER LOSS - PRIMARY ENGINE INDUCTION AIR SYSTEM BLOCKAGE</td>
<td>3-7</td>
</tr>
<tr>
<td>ENGINE ROUGHNESS</td>
<td>3-8</td>
</tr>
<tr>
<td>HIGH CYLINDER HEAD TEMPERATURE</td>
<td>3-8</td>
</tr>
<tr>
<td>HIGH OIL TEMPERATURE</td>
<td>3-8</td>
</tr>
<tr>
<td>LOW OIL PRESSURE</td>
<td>3-8</td>
</tr>
<tr>
<td>LOW FUEL PRESSURE</td>
<td>3-8</td>
</tr>
<tr>
<td>ENGINE DRIVEN FUEL PUMP FAILURE</td>
<td>3-8</td>
</tr>
<tr>
<td>FUEL VAPOR SUPPRESSION (FLUCTUATING FUEL PRESSURE)</td>
<td>3-9</td>
</tr>
<tr>
<td>FIRES</td>
<td>3-9</td>
</tr>
<tr>
<td>ENGINE FIRE - DURING START ON GROUND</td>
<td>3-9</td>
</tr>
<tr>
<td>ENGINE FIRE - IN FLIGHT</td>
<td>3-9</td>
</tr>
<tr>
<td>ELECTRICAL FIRE - IN FLIGHT (SMOKE IN CABIN)</td>
<td>3-9</td>
</tr>
<tr>
<td>EMERGENCY DESCENT PROCEDURE</td>
<td>3-10</td>
</tr>
<tr>
<td>GLIDE</td>
<td>3-10</td>
</tr>
<tr>
<td>FORCED LANDING EMERGENCY</td>
<td>3-11</td>
</tr>
<tr>
<td>GEAR RETRACTED OR EXTENDED</td>
<td>3-11</td>
</tr>
<tr>
<td>OVERWEIGHT LANDING PROCEDURES</td>
<td>3-11</td>
</tr>
<tr>
<td>SYSTEMS EMERGENCIES</td>
<td>3-11</td>
</tr>
<tr>
<td>PROPELLER</td>
<td>3-11</td>
</tr>
<tr>
<td>FUEL</td>
<td>3-11</td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td>3-11</td>
</tr>
<tr>
<td>LANDING GEAR</td>
<td>3-12</td>
</tr>
<tr>
<td>VACUUM</td>
<td>3-13</td>
</tr>
<tr>
<td>OXYGEN</td>
<td>3-13</td>
</tr>
<tr>
<td>ALTERNATE STATIC SOURCE</td>
<td>3-13</td>
</tr>
<tr>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>UNLATCHED DOORS IN FLIGHT</td>
<td>3-14</td>
</tr>
<tr>
<td>ICING</td>
<td>3-14</td>
</tr>
<tr>
<td>EMERGENCY EXIT OF AIRCRAFT</td>
<td>3-15</td>
</tr>
<tr>
<td>SPINS</td>
<td>3-16</td>
</tr>
<tr>
<td>OTHER EMERGENCIES</td>
<td>3-16</td>
</tr>
</tbody>
</table>
This section provides the recommended procedures to follow during adverse flight conditions. The information is presented to enable you to form, in advance, a definite plan of action for coping with the most probable emergency situations which could occur in the operation of your airplane.

As it is not possible to have a procedure for all types of emergencies that may occur, it is the pilot's responsibility to use sound judgement based on experience and knowledge of the aircraft to determine the best course of action. Therefore, it is considered mandatory that the pilot read the entire manual, especially this section before flight.

When applicable, emergency procedures associated with optional equipment such as Autopilots are included in SECTION IX.

[NOTE]

All airspeeds in this section are indicated (IAS) and assume zero instrument error unless stated otherwise.
AIRSPEEDS FOR EMERGENCY OPERATIONS

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>RECOMMENDED SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE FAILURE AFTER TAKEOFF</td>
<td></td>
</tr>
<tr>
<td>Wing Flaps UP</td>
<td>85 KIAS</td>
</tr>
<tr>
<td>Wing Flaps DOWN</td>
<td>80 KIAS</td>
</tr>
</tbody>
</table>

3368 lb/1528 kg	91.5 KIAS
3200 lb/1452 kg	89.0 KIAS
2900 lb/1315 kg	84.5 KIAS
2600 lb/1179 kg	80.0 KIAS

3368 lb/1528 kg	127 KIAS
3300 lb/1497 kg	126 KIAS
2430 lb/1102 kg	108 KIAS
2232 lb/1012 kg	103 KIAS

MANEUVERING SPEED	
3368 lb/1528 kg	127 KIAS
3300 lb/1497 kg	126 KIAS
2430 lb/1102 kg	108 KIAS
2232 lb/1012 kg	103 KIAS

| PRECAUTIONARY LANDING WITH ENGINE POWER | |
| Flaps DOWN | 75 KIAS |

| PRECAUTIONARY LANDING ABOVE 3200 LBS | |
| Flaps DOWN | 80 KIAS |

EMERGENCY DESCENT (GEAR UP)	
Smooth Air	196 KIAS
Turbulent Air	
3368 lb/1528 kg	127 KIAS
3300 lb/1497 kg	126 KIAS
2430 lb/1102 kg	108 KIAS
2232 lb/1012 kg	103 KIAS

EMERGENCY DESCENT (GEAR DOWN)	
Smooth Air	165 KIAS
Turbulent Air	
3368 lb/1528 kg	127 KIAS
3300 lb/1497 kg	126 KIAS
2430 lb/1102 kg	108 KIAS
2232 lb/1012 kg	103 KIAS
Annunciator Panel Warning Lights

<table>
<thead>
<tr>
<th>WARNING LIGHT</th>
<th>FAULT & REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEAR UNSAFE</td>
<td>RED light indicates landing gear is not in fully extended/or retracted position. Refer to "FAILURE OF LANDING GEAR TO EXTEND ELECTRICALLY" procedure or "FAILURE OF LANDING GEAR TO RETRACT" procedure.</td>
</tr>
<tr>
<td>LEFT or RIGHT FUEL</td>
<td>RED light indicates 2 1/2 to 3 gals. (9.5 to 11.4 liters) S/N 29-0001 thru 29-0169); [6 to 8 gals. (23 to 30.3 liters) S/N 29-0170 thru 29-0199)] of usable fuel remain in the respective tanks. Switch to fuller tank.</td>
</tr>
<tr>
<td>SPEED BRAKE</td>
<td>AMBER light indicates Speed Brakes are activated.</td>
</tr>
<tr>
<td>ALT AIR</td>
<td>AMBER light indicates alternate induction air door is open.</td>
</tr>
<tr>
<td>PROP DE-ICE</td>
<td>BLUE light indicates power applied to De-Ice boots</td>
</tr>
<tr>
<td>PITOT HEAT</td>
<td>BLUE light indicates power is applied to heater. (Some Foreign A/C - AMBER light indicates power is NOT applied to heater.)</td>
</tr>
<tr>
<td>HI/LO VAC (Flashing)</td>
<td>Suction is below 4.25 in. Hg. (RED) Turn Stand-by Vacuum pump - ON</td>
</tr>
<tr>
<td>HI/LO VAC (Steady)</td>
<td>Suction is above 5.5 in. Hg. (RED) Turn Stand-by Vacuum pump - ON</td>
</tr>
</tbody>
</table>

NOTE

Attitude and Directional Gyros are unreliable when VAC light is illuminated (steady or flashing). Vacuum system should be checked and/or adjusted as soon as practicable.

<table>
<thead>
<tr>
<th>ALT VOLTS</th>
<th>RED light indicates alternator output low. Refer to "ALTERNATOR OUTPUT LOW".</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing</td>
<td>RED light indicates overvoltage and Alt. field. C/B tripped. Refer to "ALTERNATOR OVER-VOLTAGE".</td>
</tr>
<tr>
<td>Steady</td>
<td>RED light indicates switch or relay is engaged and starter is energized. Flight should be terminated as soon as practicable. Engine damage may result. This is normal indication during engine start.</td>
</tr>
<tr>
<td>START POWER</td>
<td>AMBER light indicates stand-by vacuum pump is ON.</td>
</tr>
<tr>
<td>STBY VAC</td>
<td>NOT USED AT THIS TIME</td>
</tr>
<tr>
<td>REMOTE RNAV</td>
<td>BLUE light indicates power to auxiliary fuel boost pump.</td>
</tr>
</tbody>
</table>

Issued 6-94
Rev. G
SECTION III
EMERGENCY PROCEDURES

MOONEY M20R

ENGINE

POWER LOSS - DURING TAKEOFF ROLL

Throttle: CLOSED
Brakes: AS REQUIRED TO STOP AIRCRAFT
Fuel Selector: OFF
Magneto/Starter Switch: OFF
Master Switch: OFF

POWER LOSS - AFTER LIFTOFF

Airspeed: 85 KIAS (Flaps UP)

Fuel Selector: SELECT OTHER TANK
Throttle: FULL FORWARD
Magneto switch: Verify on BOTH
Mixture: FULL FORWARD
Propeller: FULL FORWARD
LOW Boost Pump Switch: ON - to attempt re-start
If Engine Quits - then:
HIGH BOOST Pump (guarded switch): ON - to attempt re-start

LAND AS SOON AS PRACTICABLE; CORRECT MALFUNCTION PRIOR TO NEXT FLIGHT.

If engine does not re-start, proceed to FORCED LANDING EMERGENCY.

WARNING

Engine may run rough due to overrich mixture. Lean mixture until engine operates smoothly.

POWER LOSS - IN FLIGHT (RE-START PROCEDURES)

Airspeed: 85 KIAS minimum
Fuel Selector: SELECT OTHER TANK (Verify fullest tank)
LOW Boost Pump Switch: ON - to attempt re-start
Throttle: FULL FORWARD
Propeller: FULL FORWARD
Mixture: AS REQUIRED to restore power
Magneto/Starter Switch: VERIFY on BOTH
LOW Boost Pump Switch: OFF if engine does not start immediately
HIGH BOOST Pump (guarded switch): ON - to attempt re-start
Alternate Air Door: Manually Open

If engine does not start after initial attempts:
Mixture: IDLE CUT-OFF (Initially)

then advance slowly toward RICH until engine starts.

If engine does not re-start after several attempts establish best glide speed (Refer to Maximum Glide Distance Chart) and proceed to FORCED LANDING EMERGENCY.

After engine re-start:

Throttle: ADJUST as required
Propeller: ADJUST as required
Mixture: RELÈAN as required for power setting
HIGH BOOST Pump Switch: OFF

NOTE

If engine fails when HIGH BOOST pump is turned OFF, suspect engine driven fuel pump failure. Proceed to ENGINE DRIVEN FUEL PUMP FAILURE.
LAND AS SOON AS PRACTICABLE; CORRECT MALFUNCTION PRIOR TO NEXT FLIGHT.

~ ~ ~ ~ ~

~ CAUTION~
~ ~ ~ ~ ~

Should engine excessively cool during engine out, care should be exercised during re-start to avoid excessive oil pressure. Allow engine to warm up.

OPERATING THE ENGINE AT TOO HIGH AN RPM BEFORE REACHING MINIMUM OIL TEMPERATURES MAY CAUSE LOSS OF OIL PRESSURE.

POWER LOSS - PRIMARY ENGINE INDUCTION AIR SYSTEM BLOCKAGE

Blockage of the primary engine induction air system may be experienced as a result of flying in cloud or heavy snow with cold outside air temperatures (0°C or below). At these temperatures, very small water droplets or solid ice crystals in the air may enter the primary engine induction inlet in cowl opening and travel inside inlet duct to the induction air filter. Ice particles or water droplets may collect and freeze on the air filter causing partial or total blockage of the primary engine induction system.

If primary induction air system blockage occurs, the alternate engine induction air system will automatically open, supplying engine with an alternate air source drawn from inside the cowling rather than through the air filter. The alternate air system can also be manually opened at any time by pulling the control labeled ALTERNATE AIR. Automatic or manual activation of the alternate induction system is displayed in the cockpit by the illumination of the ALT AIR light in the main annunciator panel. When operating on the alternate air system, available engine power will be less for a given propeller RPM compared to the primary induction air system. This is due to loss of ram effect and induction of warmer inlet air.

The following checklist should be used if a partial power loss due to primary induction air system blockage is experienced:

Alternate Air .. Verify OPEN (annunciator light ON)
Manifold Pressure 1 - 2 inches less than normal, due to warm induction air

NOTE

The alternate air door should open automatically when primary induction system is restricted. If alternate air door has not opened (Annunciator light-OFF) it can be opened manually by pulling alternate air control.

Throttle .. INCREASE as desired
Propeller .. INCREASE as required
t to maintain desired cruise power setting (Ref.SECTION V)
Mixture .. RELEAn to desired EGT
Flight ... CONTINUE - request altitude with warmer air, if able.

In the unlikely event that a total power loss, due to primary engine induction air blockage, is experienced, the following checklist should be used:

Airspeed .. BEST GLIDE SPEED
Alternate Air ... Manually OPEN
LOW Boost Pump Switch ON
Throttle .. Full FORWARD
Propeller .. FULL FORWARD
Mixture .. AS REQUIRED to restore power
Magneto/Starte Switch Verify on BOTH

After engine re-start:

Throttle .. ADJUST as required
Propeller .. ADJUST as required
Mixture .. RELEAn as required for power setting
LOW Boost Pump Switch (Refer to power charts - SECTION V) OFF

ISSUED 6 - 94 REV 9 - 95 3 - 7
If engine does not re-start after several attempts, maintain best glide speed & proceed to FORCED LANDING EMERGENCY.

ENGINE ROUGHNESS

<table>
<thead>
<tr>
<th>Engine Instruments</th>
<th>CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Selector</td>
<td>OTHER TANK</td>
</tr>
<tr>
<td>Mixture</td>
<td>READJUST for smooth operation</td>
</tr>
<tr>
<td>Magneto/Start Switch</td>
<td>Select R or L or BOTH</td>
</tr>
</tbody>
</table>

If roughness disappears on single magneto, monitor power and continue on selected magneto.

HIGH CYLINDER HEAD TEMPERATURE

<table>
<thead>
<tr>
<th>Mixture</th>
<th>ENRICH As Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspeed</td>
<td>INCREASE As Required</td>
</tr>
<tr>
<td>Power</td>
<td>REDUCE - if temperature cannot be maintained within limits</td>
</tr>
</tbody>
</table>

HIGH OIL TEMPERATURE

NOTE

Prolonged high oil temperature indications will usually be accompanied by a drop in oil pressure. If oil pressure remains normal, then a high temperature indication may be caused by a faulty gauge or thermocouple.

<table>
<thead>
<tr>
<th>Airspeed</th>
<th>INCREASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>REDUCE</td>
</tr>
</tbody>
</table>

PREPARE FOR POSSIBLE ENGINE FAILURE IF TEMPERATURE CONTINUES HIGH.

LOW OIL PRESSURE

<table>
<thead>
<tr>
<th>Oil temperature and pressure gauges</th>
<th>Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure below 10 PSI</td>
<td>EXPECT ENGINE FAILURE</td>
</tr>
</tbody>
</table>

ENGINE DRIVEN FUEL PUMP FAILURE

WARNING

When operating engine at moderate power with "HIGH BOOST" ON and engine driven fuel pump has failed, engine may quit or run rough when manifold pressure is reduced, unless manually leaned.

An engine driven fuel pump failure is probable when engine will only operate with HIGH BOOST pump ON. Operation of engine with a failed engine driven fuel pump and auxiliary fuel pump HIGH BOOST ON will require smooth operation of engine controls and corresponding mixture change when throttle is repositioned or engine speed is changed. When retarding throttle or reducing engine speed, adjust mixture to prevent engine power loss from an overrich condition. Enrich mixture when opening throttle or increasing engine speed to prevent engine power loss from a lean condition. Always lean to obtain a smooth running engine.
The following procedure should be followed when a failed engine driven fuel pump is suspected:

HIGH BOOST Pump (guarded switch) ON
Throttle CRUISE Position or as required for engine operation
Mixture ADJUST for smooth engine operation.
LAND AS SOON AS PRACTICABLE & CORRECT MALFUNCTION.

FUEL VAPOR SUPPRESSION (Fluctuating Fuel Flow)

Low Fuel Boost Pump Switch ON to clear vapors
Engine operation MONITOR
Low Fuel Boost Pump Switch OFF - (If condition still exists, REPEAT PROCEDURE).

Fires

ENGINE FIRE - DURING START ON GROUND

Magnet/Start Switch CONTINUE cranking or until fire is extinguished.

If engine starts:
Power 1500 RPM for several minutes
Engine SHUTDOWN; inspect for damage

If engine does NOT start:
Magnet/Start Switch CONTINUE CRANKING
Mixture IDLE CUTOFF OFF
Low Fuel Boost Pump Switch FULL FORWARD OFF
Throttle OFF
Fuel Selector Valve OFF
Magnet/Start Switch OFF
Master Switch OFF
FIRE EXTINGUISH with Fire Extinguisher

ENGINE FIRE - IN FLIGHT

Fuel Selector Valve OFF
Throttle CLOSED
Mixture IDLE CUTOFF OFF
Magnet/Start Switch OFF
Cabin Ventilation & Heating Controls CLOSED

| NOTE |

If fire is not extinguished, attempt to increase airflow over engine by increasing glide speed. Proceed with FORCED LANDING EMERGENCY. DO NOT attempt an engine restart.

If necessary, use fire extinguisher to keep fire out of cabin area.

ELECTRICAL FIRE - IN FLIGHT (Smoke in Cabin)

Master Switch OFF

Stall warning and landing gear warning, not available with Master Switch OFF.

Alternate Field Switch OFF
Cabin Ventilation OPEN
Heating Controls CLOSED
Circuit Breakers CHECK to identify faulty circuit if possible
LAND AS SOON AS POSSIBLE.

If electrical power is essential for flight, attempt to identify and isolate faulty circuit as follows:

Master Switch ON
Alternate Field Switch ON
EMERGENCY PROCEDURES

Select ESSENTIAL switches ON one at a time; permit a short time to elapse before activating an additional circuit.

EMERGENCY DESCENT PROCEDURE

In the event an emergency descent from high altitude is required, rates of descent of at least 3,000 feet per minute can be obtained in two different configurations:

1. With landing gear and flaps retracted, an airspeed of 196 KIAS will be required for maximum rate of descent.

2. With the landing gear extended and flaps retracted an airspeed of 165 KIAS will also give approximately the same rate of descent. At 165 KIAS and the gear extended, the angle of descent will be greater, thus resulting in less horizontal distance traveled than a descent at 196 KIAS. Additionally, descent at 165 KIAS will provide a smoother ride and less pilot work load.

THEREFORE; The following procedure is recommended for an emergency descent:

<table>
<thead>
<tr>
<th>Power</th>
<th>Airspeed</th>
<th>Landing Gear Airspeed</th>
<th>Flaps</th>
<th>Speedbrakes (if installed)</th>
<th>Altitude</th>
<th>Power During Descent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RETARD INITIALLY</td>
<td>140 KIAS</td>
<td>140 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INCREASE TO 165 KIAS after landing gear is extended.</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAINTAIN 165 KIAS during descent.</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS DESIRED</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS REQUIRED</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RETARD INITIALLY</td>
<td>140 KIAS</td>
<td>140 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INCREASE TO 165 KIAS after landing gear is extended.</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAINTAIN 165 KIAS during descent.</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS DESIRED</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS REQUIRED</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RETARD INITIALLY</td>
<td>140 KIAS</td>
<td>140 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INCREASE TO 165 KIAS after landing gear is extended.</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MAINTAIN 165 KIAS during descent.</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS DESIRED</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AS REQUIRED</td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165 KIAS</td>
<td>165 KIAS</td>
</tr>
</tbody>
</table>

GLIDE

MAXIMUM GLIDE DISTANCE MODEL M20R

ASSOCIATED CONDITIONS
- Landing Gear Retracted
- Wing Flaps Zero Degrees
- Cowl Flap Closed
- Propeller Windmilling
- Wind Zero Wind

BEST GLIDE SPEED
- Weight (LBS) 91.5
- IAS (Kts) 1452
- LBS (Kg) 3368
- IAS (Kts) 89.0
- LBS (Kg) 3200
- IAS (Kts) 84.5
- LBS (Kg) 2800
- IAS (Kts) 80.0
- LBS (Kg) 2600
- IAS (Kts) 80.0

Issued: 6-94
Revision: E 9-95
Page: 3-10
Greater glide distances can be attained by moving the propeller control FULL AFT (LOW RPM).

FORCED LANDING EMERGENCY

GEAR RETRACTED OR EXTENDED

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Locator Transmitter</td>
<td>ARMED</td>
</tr>
<tr>
<td>Seat Belts/Shoulder Harnesses</td>
<td>SECURE</td>
</tr>
<tr>
<td>Cabin Door</td>
<td>UNLATCHED</td>
</tr>
<tr>
<td>Fuel Selector</td>
<td>OFF</td>
</tr>
<tr>
<td>Mixture</td>
<td>IDLE CUTOFF</td>
</tr>
<tr>
<td>Magneto/Starter Switch</td>
<td></td>
</tr>
<tr>
<td>Wing Flaps</td>
<td>Full DOWN</td>
</tr>
<tr>
<td>Landing Gear</td>
<td>DOWN-If conditions permit</td>
</tr>
<tr>
<td>Approach Speed</td>
<td>.80 KIAS</td>
</tr>
<tr>
<td>Master Switch</td>
<td>OFF, prior to landing</td>
</tr>
<tr>
<td>Wings</td>
<td>LEVEL Attitude</td>
</tr>
</tbody>
</table>

OVERWEIGHT LANDING PROCEDURES

In the event it is necessary to land with weight exceeding 3200 Lbs. (1452 Kg.) (max. landing weight) the following procedure is recommended in addition to normal APPROACH FOR LANDING procedures:

- Approach Airspeed: 80 KIAS

Use a flatter approach angle than normal, with power as necessary until a smooth touchdown is assured.

Expect landing distance over a 50 feet obstacle (Ref. SECTION V) to increase at least 600 ft.

Conduct Gear and Tire Servicing inspection as required (Ref. SECTION VIII).

SYSTEMS EMERGENCIES

PROPELLER

PROPELLER OVERSPEED

<table>
<thead>
<tr>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throttle</td>
<td>.RETARD</td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>.CHECK</td>
</tr>
<tr>
<td>Propeller</td>
<td>DECREASE RPM, re-set if any control available</td>
</tr>
<tr>
<td>Airspeed</td>
<td>REDUCE</td>
</tr>
<tr>
<td>Throttle</td>
<td>AS REQUIRED to maintain RPM below 2500 RPM</td>
</tr>
</tbody>
</table>

FUEL

LOW FUEL FLOW

Check mixture: ENRICH
Fuel Selector: SWITCH TANKS

If condition persists, use Fuel Boost Pump as necessary. LANDING should be made as soon as PRACTICABLE.

ELECTRICAL

ALTERNATOR OVERVOLTAGE

(Alternator warning light illuminated steady and Alternator Field circuit breaker tripped.)

Alternator Field Circuit Breaker: RESET

If circuit breaker will not reset, the following procedures are required:
1. Reduce electrical load, as required, to maintain essential systems.
2. Continue flight and LAND, when PRACTICABLE, to correct malfunction.

NOTE

The only source of electrical power is from the selected battery. Monitor battery voltage (min. 18V) and switch to other battery when necessary.

ALTERNATOR OUTPUT LOW
(Alternator warning light flashing)

REDUCE ELECTRICAL LOAD

If annunciator light still flashes:

- Alternator Field Switch OFF

1. Reduce electrical load, as required, to maintain essential systems.
2. Continue flight and LAND, when PRACTICABLE, to correct malfunction.

NOTE

The only source of electrical power is from the selected battery. Monitor battery voltage (min. 18V) and switch to other battery when necessary.

Battery endurance will depend upon battery condition and electrical load on battery. If one battery becomes depleted, switch to other battery.

LANDING GEAR

FAILURE OF LANDING GEAR TO EXTEND ELECTRICALLY

- Airspeed ≤ 140 KIAS or less
- Landing Gear Actuator Circuit Breaker PULL
- Landing Gear Switch DOWN
- Gear Manual Emergency Extension Mechanism:
 - LATCH FORWARD/LEVER BACK
 - to engage manual extension mechanism

NOTE

Slowly pull "T" handle 1 to 2 inches (2.5 to 5.1 cm) to rotate clutch mechanism and allow it to engage drive shaft.

- T-Handle PULL (12 to 20 times) and RETURN until gear is down and locked
- GEAR DOWN light ILLUMINATED; STOP when resistance is felt.
- Visual Gear Down Indicator CHECK ALIGNMENT by viewing from directly above indicator

--- CAUTION ---

Continuing to pull on T-Handle, after GEAR DOWN light ILLUMINATES, may bind actuator; electrical retraction MAY NOT be possible until binding is eliminated by ground maintenance. Return lever to normal position and secure with latch. Reset landing gear actuator circuit breaker.

--- WARNING ---

Do not operate landing gear electrically with manual extension system engaged

Do not fly craft until maintenance/inspection is done on landing gear system.

FAILURE OF LANDING GEAR TO RETRACT

- AIRSPEED Below 107 KIAS
- GEAR Switch UP Position

GEAR FAILS TO RETRACT — GEAR HORN - SOUNDING;
GEAR ANNUNCIATOR LIGHT & GEAR SAFETY BY-PASS LIGHT — ILLUMINATED
GERE SAFETY BY-PASS SWITCH
DEPRESS
HOLD until landing gear is fully retracted

“GEAR UNSAFE” and “GEAR DOWN” Lights
EXTINGUISHED

“GEAR RELAY” Ckt. Bkr
PULL
(Warning Horn and Gear By-Pass light will go OFF)

Check “Airspeed Safety Switch” or other malfunction as soon as practicable.

“GEAR RELAY” Ckt. Bkr
PUSH IN

WHEN READY TO EXTEND LANDING GEAR

Airspeed
GEAR RELAY C/B
Landing Gear Switch
GEAR DOWN Light

BELOW 140 KIAS
RESET
DOWN
ILLUMINATED

NOTE

If above procedures do not initiate retraction process, check gear emergency
manual extension lever (on floor) for proper position.

GEAR FAILS TO RETRACT -- GEAR HORN - DOES NOT SOUND
GEAR ANNUNCIATOR LIGHTS & GEAR BY-PASS LIGHT -- NOT ILLUMINATED

GEAR EMERGENCY EXTENSION LEVER (on floor) Verify LATCHED in proper position
GEAR ACTUATOR C/B RESET
FLIGHT Gear should retract if C/B was tripped
CONTINUE (if desired)

When ready to extend landing gear at next landing:

AIRSPEED
GEAR SWITCH

Below 140 KIAS
DOWN Position

If gear will not extend electrically at this time, refer to FAILURE OF LANDING GEAR TO
EXTEND ELECTRICALLY (previous page).

VACUUM

When “HI/LO VAC” annunciator light illuminates (flashing or steady), vacuum operated
instruments are considered to be unreliable. Push stand-by vacuum pump switch ON. The
flashing HI/LO VAC annunciator light should extinguish and the STBY VAC annunciator will
illuminate. The vacuum operated gyro instruments will be operating on the stand-by vac-
uum system. The steady RED annunciator light may not extinguish when the stand-by
vacuum switch is ON. Continue flight, monitor non-vacuum gauges. Have vacuum system
inspected prior to next flight.

OXYGEN

In the event of oxygen loss above 12,500 ft. return to 12,500 ft as soon as feasible.
Refer to SECTION X for the physiological characteristics of high altitude flight.

ALTERNATE STATIC SOURCE

The alternate static air source should be used whenever it is suspected that the normal static air
sources are blocked. Selecting the alternate static source changes the source of static air for the
altimeter, airspeed indicator and rate-of-climb from outside of the aircraft to the cabin interior.
When alternate static source is in use, adjust indicated airspeed and altimeter readings according
to the appropriate alternate static source airspeed and altimeter calibration tables in SECTION V.
The alternate static air source valve is located on the instrument panel below pilot’s control wheel
shaft.

NOTE

When using Alternate Static Source, pilot’s window and air vents
MUST BE KEPT CLOSED.

Alternate Static Source
PULL ON
Airspeed and Altimeter Readings
CHECK Calibration Tables (Ref SECTION V)

ISSUED 6 - 94
REV. F 9 - 96
3 - 13
UNLATCHED DOORS IN FLIGHT

CABIN DOOR

If cabin door is not properly closed it may come unlatched in flight. This may occur during or just after take-off. The door will trail in a position approximately 3 inches (7.6 cm) open, but the flight characteristics of the airplane will not be affected. There will be considerable wind noise; loose objects, in the vicinity of the open door, may exit the aircraft. Return to the field in a normal manner. If practicable, secure the door in some manner to prevent it from swinging open during the landing.

If it is deemed impractical to return and land, the door can be closed in flight, after reaching a safe altitude, by the following procedures:

- **Airspeed**: 95 KIAS
- **Pilot's Storm Window**: OPEN
- **Aircraft**: RIGHT SIDESLIP (right bank with left rudder)
- **Door**: FULL SHUT & LATCH

BAGGAGE DOOR

If baggage door is not properly closed, it may come unlatched in flight. This may occur during or after takeoff. The door may open to its full open position and then take an intermediate position depending upon speed of aircraft. There will be considerable wind noise; loose objects, in the vicinity of the open door, may exit the aircraft. There is no way to shut and latch door from the inside. Aircraft flight characteristics will not be affected; fly aircraft in normal manner; LAND AS SOON AS POSSIBLE and secure baggage door.

Baggage Door latching mechanism VERIFY MECHANISM PROPERLY ENGAGED (inside latching mechanism) then shut from outside aircraft.

ICING

DO NOT OPERATE IN KNOWN ICING CONDITIONS.

The Model M20R is NOT APPROVED for flight into known icing conditions and operation in that environment is prohibited. However, if those conditions are inadvertently encountered or flight into heavy snow is unavoidable, the following procedures are recommended until further icing conditions can be avoided:

INADVERTENT ICING ENCOUNTER

- **Pitot Heat**: ON
- **Propeller De-Ice**: ON (if installed)
- **Alternate Static Source**: ON (if required)
- **Cabin Heat & Defroster**: ON
- **Engine Gauges**: MONITOR for any engine power reduction

Turn back or change altitude to obtain an outside air temperature less conducive to icing.

Move propeller control to maximum RPM to minimize ice build-up on propeller blades. If ice builds up or sheds unevenly on propeller, vibration will occur. If excessive vibration is noted, momentarily reduce engine speed with propeller control to bottom of GREEN ARC, then rapidly move control FULL FORWARD.

NOTE

Cycling RPM flexes propeller blades and high RPM increases centrifugal force which improves propeller capability to shed ice.

As ice builds on the airframe, move elevator control fore and aft slightly to break any ice build-up that may have bridged gap between elevator horn and horizontal stabilizer.
Watch for signs of induction air filter blockage due to ice build-up; increase throttle setting to maintain engine power.

NOTE

If ice blocks induction air filter, alternate air system will open automatically.

With ice accumulation of 1/4 inch or more on the airframe, be prepared for a significant increase in aircraft weight and drag. This will result in significantly reduced cruise and climb performance and higher stall speeds. Plan for higher approach speeds requiring higher power settings and longer landing rolls.

~ ~ ~ ~ ~ ~

CAUTION~

~ ~ ~ ~ ~ ~

Stall warning system may be inoperative.

NOTE

The defroster may not clear ice from windshield. If necessary open pilot's storm window for visibility in landing approach and touchdown.

With ice accumulations of 1 inch or less, use no more than 15° wing flaps for approach and landing. For ice accumulation of 1 inch or more, fly approaches and landing with flaps retracted to maintain better pitch control. Fly approach speed at least 15 knots faster than normal, expect a higher stall speed, resulting in higher touchdown speed with longer landing roll. Use normal flare and touchdown technique.

Missed approaches SHOULD BE AVOIDED whenever possible because of severely reduced climb performance. If a go-around is mandatory, apply full power, retract landing gear when obstacles are cleared; maintain 90 KIAS and retract wing flaps.

--- AVOID FURTHER ICING CONDITIONS ---

EMERGENCY EXIT OF AIRCRAFT

CABIN DOOR

PULL latch handle AFT.
OPEN door and exit aircraft.

BAGGAGE COMPARTMENT DOOR (Auxiliary Exit)

Release (Pull UP) rear seat back latches on spar.
Fold rear seat backs forward, CLIMB OVER.
PULL off plastic cover from over inside latch.
PULL latch pin.
Pull red handle.
OPEN door and exit aircraft.

To VERIFY RE-ENGAGEMENT of baggage door, outside latch mechanism:

Open outside handle fully.
Close inside RED handle to engage pin into cam slide of latch mechanism.
Place latch pin in shaft hole to hold RED handle DOWN.
Replace cover.
CHECK & operate outside handle in normal manner.
Up to 2,000 ft. altitude may be lost in a one turn spin and recovery; STALLS AT LOW ALTITUDE ARE EXTREMELY CRITICAL.

NOTE

The best spin avoidance technique is to avoid flight conditions conducive to spin entry. Low speed flight near stall should be approached with caution and excessive flight control movements in this flight regime should be avoided. Should an unintentional stall occur, the aircraft should not be allowed to progress into a deep stall. Fast, but smooth stall recovery will minimize the risk of progressing into a spin. If an unusual post stall attitude develops and results in a spin, quick application of antispin procedures should shorten the recovery.

INTENTIONAL SPINS ARE PROHIBITED.

In the event of an inadvertent spin, the following recovery procedure should be used:

Throttle RETARD to IDLE
Ailerons NEUTRAL
Rudder Apply FULL RUDDER opposite direction of spin
Control Wheel FORWARD of neutral in a brisk motion

ADDITIONAL FORWARD elevator control may be required if rotation does not stop.

--- HOLD ANTI-SPIN CONTROLS UNTIL ROTATION STOPS ---

Wing Flaps (If extended) RETRACT as soon as possible
Rudder NEUTRALIZE when spin stops
Control Wheel SMOOTHLY MOVE AFT to bring the nose up to level flight attitude.

OTHER EMERGENCIES

Refer to SECTION IX for Emergency Procedures of Optional Equipment.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>4-3</td>
</tr>
<tr>
<td>SPEEDS FOR NORMAL OPERATION</td>
<td>4-4</td>
</tr>
<tr>
<td>PREFLIGHT INSPECTION</td>
<td>4-5</td>
</tr>
<tr>
<td>BEFORE STARTING CHECK</td>
<td>4-7</td>
</tr>
<tr>
<td>ENGINE START</td>
<td>4-8</td>
</tr>
<tr>
<td>FLOODED ENGINE START</td>
<td>4-9</td>
</tr>
<tr>
<td>WARM ENGINE START</td>
<td>4-9</td>
</tr>
<tr>
<td>HOT ENGINE START</td>
<td>4-9</td>
</tr>
<tr>
<td>BEFORE TAXI</td>
<td>4-9</td>
</tr>
<tr>
<td>TAXI</td>
<td>4-10</td>
</tr>
<tr>
<td>BEFORE TAKEOFF</td>
<td>4-10</td>
</tr>
<tr>
<td>TAKEOFF</td>
<td>4-11</td>
</tr>
<tr>
<td>CLIMB</td>
<td>4-11</td>
</tr>
<tr>
<td>CLIMB (CRUISE CLIMB)</td>
<td>4-11</td>
</tr>
<tr>
<td>CLIMB (BEST RATE)</td>
<td>4-11</td>
</tr>
<tr>
<td>CLIMB (BEST ANGLE)</td>
<td>4-12</td>
</tr>
<tr>
<td>CRUISE</td>
<td>4-11</td>
</tr>
<tr>
<td>FUEL TANK SELECTION</td>
<td>4-12</td>
</tr>
<tr>
<td>OXYGEN SYSTEM</td>
<td>4-13</td>
</tr>
<tr>
<td>DESCENT</td>
<td>4-13</td>
</tr>
<tr>
<td>GEAR UP</td>
<td>4-13</td>
</tr>
<tr>
<td>GEAR DOWN</td>
<td>4-14</td>
</tr>
<tr>
<td>APPROACH FOR LANDING</td>
<td>4-14</td>
</tr>
<tr>
<td>GO AROUND (BALKED LANDING)</td>
<td>4-15</td>
</tr>
<tr>
<td>LANDING</td>
<td>4-15</td>
</tr>
<tr>
<td>TAXI AFTER LANDING</td>
<td>4-15</td>
</tr>
<tr>
<td>SHUTDOWN</td>
<td>4-16</td>
</tr>
<tr>
<td>SECURING AIRCRAFT</td>
<td>4-16</td>
</tr>
</tbody>
</table>
This section describes the recommended procedures for the conduct of normal operations for the airplane. All of the required (FAA regulations) procedures and those necessary for operation of the airplane as determined by the operating and design features of the airplane are presented.

These procedures are provided to present a source of reference and review and to supply information on procedures which are the same for all aircraft. Pilots should familiarize themselves with the procedures given in this section in order to become proficient in the normal operations of the airplane.

Normal procedures associated with those optional systems and equipment which require handbook supplements are provided by SECTION IX (Supplemental Data).
SPEEDS FOR NORMAL OPERATION

Unless otherwise noted, the following speeds are based on a weight of 3368 pounds and may be used for any lesser weight. However, to achieve the performance specified in SECTION V for takeoff distance and climb performance, the speed appropriate to the particular weight must be used.

TAKEOFF:

<table>
<thead>
<tr>
<th>Description</th>
<th>Speed (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Climb Out</td>
<td>80-90</td>
</tr>
<tr>
<td>Short Field Takeoff, Speed At 50 Ft.</td>
<td>75</td>
</tr>
</tbody>
</table>

ENROUTE CLimb, GEAR and FLAPS UP:

<table>
<thead>
<tr>
<th>Description</th>
<th>Speed (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Rate of Climb</td>
<td>105</td>
</tr>
<tr>
<td>Best Angle of Climb</td>
<td>85</td>
</tr>
</tbody>
</table>

LANDING APPROACH (3200 lbs.):

<table>
<thead>
<tr>
<th>Description</th>
<th>Speed (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Approach, Flaps 10 degrees</td>
<td>80</td>
</tr>
<tr>
<td>Normal Approach, Flaps 33 degrees</td>
<td>75</td>
</tr>
<tr>
<td>Short Field Approach, Flaps 33 degrees</td>
<td>70</td>
</tr>
</tbody>
</table>

BALKED LANDING (3200 lbs.):

<table>
<thead>
<tr>
<th>Description</th>
<th>Speed (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power, Flaps 10 degrees</td>
<td>85</td>
</tr>
</tbody>
</table>

MAXIMUM RECOMMENDED TURBULENT AIR PENETRATION SPEED:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Speed (KIAS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3368 lbs./1528 Kgs</td>
<td>127</td>
</tr>
<tr>
<td>3200 lbs./1452 Kgs</td>
<td>123</td>
</tr>
<tr>
<td>2900 lbs./1315 Kgs</td>
<td>117</td>
</tr>
<tr>
<td>2600 lbs./1179 Kgs</td>
<td>111</td>
</tr>
<tr>
<td>2400 lbs./1089 Kgs</td>
<td>106</td>
</tr>
</tbody>
</table>

DEMONSTRATED CROSSWIND VELOCITY:

Takeoff or Landing: 13 Knots

(See CROSSWIND COMPONENT CHART, SECTION V)
1. Cockpit -
 Gear Switch DOWN
 Magneto/Starter Switch OFF
 All Rocker Switches OFF
 Master Switch ON
 All Circuit Breakers IN
 Battery Select Switch SELECT from 1 to 2 or 2 to 1.
 CHECK Voltmeter after each selection. Leave on Battery with highest voltage.

Internal/External Lights CHECK operation
 (Check for ammeter fluctuations as each light is checked)

 Pitot Heat Switch ON
 (Check Pitot Heat annunciator light illuminated BLUE *)
 Fuel Quantity Gauges CHECK QTY
 Fuel Selector

 It is recommended that wing tank sumps be drained prior to draining gascolator.

 Rt. Tank: Pull Gascolator ring (5 seconds)
 Lt. Tank: Pull Gascolator ring (5 seconds)

Oxygen Supply Control Knob (if installed) OFF
 Oxygen Pressure Gauge CHECK
 Verify adequate oxygen supply for trip, (if use of oxygen is anticipated),
 refer to oxygen duration chart (Fig. 7-13).
 Also check that face masks and hoses are accessible and in good condition.

2. Right Fuselage/Tailcone
 Oxygen Filler Access Door and Filler Cap SECURED
 Battery # 2 Access Panel SECURED
 Instrument Static Pressure Port UNOBSTRUCTED
 General Skin Condition INSPECT
 Tailcone/Empennage Access Panel SECURED
 Tail tiedown rope/chain REMOVE

3. Empennage
 Elevator and rudder attach points and control linkage attachments INSPECT
 Empennage Freeplay-Vertical/Horizontal INSPECT
 General skin condition INSPECT

 Remove ice, snow, or frost.

* If TKS system is installed, pitot heat annunciator will illuminate AMBER when switch is ON and Pitot Heat has failed. Annunciator will not be illuminated when switch is ON and system is operating properly.
4. Left Fuselage/Tailcone
- Cabin Fresh Air Vent (Dorsal Fin)
- Tailcone/Emppennage Access Panel
- Instrument Static Pressure Port.
- Avionics/Battery # 1 Access Panel
- Auxiliary Power Plug Access Door
- Static System Drain
- General Skin Condition

5. Left Wing
- General Skin Condition
- Wing Flap & attach points
- Aileron & attach points
- Control linkages
- Wing Tip, Lights and Lens
- Fuel Tank Vent
- Pitot Tube
- Landing/Taxi Lights
- Stall Switch Vane
- Fuel Tank

NOTE

The optional visual fuel quantity gauge is to be use for partial refueling purposes only; DO NOT use for preflight quantity check.

- Tiedown rope/chain
- Wheel chock
- Left Main Landing Gear, shock discs, tire & doors
- Fuel Tank Sump Drain

Use sampler cup to VERIFY fuel is free of water, sediment & other contamination;
VERIFY proper fuel (BLUE/100LL)(GREEN/100 octane).

CAUTION

Some diesel may be BLUE, Verify by smell and feel that 100LL is being used.

NOTE

The engine compartment must be free of foreign objects which could result in possible over heating and serious damage to the engine.

- Engine Oil
- Engine Oil Filler Door
- Cooling Air Inlet

7. Propeller/Spinner & Front Cowl Area
- Propeller/Spinner
- Prop De-Ice Boots (if installed)
- Induction Air Inlet/Filter
- Nose gear, shock discs, tire & doors
- Wheel chock
8. Right Cowl Area
- Right Side Engine Cowl Fasteners, SECURED
- Cooling Air Inlet, Verify UNOBSTRUCTED
- Windshield, CLEAN
- Cabin Air Inlet, UNOBSTRUCTED

9. Right Wing
- Fuel Tank Sump Drain, DRAIN
 Use sampler cup to VERIFY fuel is free of water, sediment & other contamination.
 VERIFY proper fuel (BLUE/100LL) (GREEN/100 octane).
 SEE CAUTION on diesel fuel on previous page
 VERIFY drain closes and does not leak.
- Right main gear, shock discs, tire & doors, INSPECT
- Wheel chock, REMOVE
- General Skin Condition, INSPECT
- Fuel Tank, CHECK QUANTITY, SECURE CAP

| NOTE |
The optional visual fuel quantity gauge is to be use for partial refueling purposes only; DO NOT use for preflight quantity check.

- Tiedown rope/chain, REMOVE
- Fuel Tank vent, UNOBSTRUCTED
- Landing/Taxi Lights, INSPECT Lens & Bulbs
- Wing tip, lights and lens, INSPECT
- Aileron and attach points, INSPECT
- Wing Flap and attach points, INSPECT
- Control linkages, INSPECT

10. Baggage Door Area
- Baggage Door, VERIFY SECURED
 (VERIFY inside handle is properly secured)
 (CHECK outside handle operation)

RETURN TO COCKPIT — MASTER/ROCKER SWITCHES
OFF

BEFORE STARTING CHECK

- Preflight Inspection
- Seats, Seat Belts/Shoulder Harness (1 occupant per restraint)
- Magneto/Starter Switch
- Master Switch
- Alternator Field Switch
- Radio Master Switch
- Fuel Boost Pump Switches
- Directional Gyro (slave/free switch), SLAVED (if installed)
- Circuit Breakers
- ELT Switch
- Rocker Switches
- Alternate Static Source
- Throttle
- Propeller, FULL FORWARD (HIGH RPM)
- Mixture
- Parking Brakes
- Wing Flap Switch
- Defrost
- Cabin Heat
- Cabin Vent
- Fuel Selector
- All Rocker Switches
- Landing Gear Switch

COMPLETED
ADJUST & SECURED
OFF
OFF
OFF
OFF
OFF
OFF
ARMED
OFF
CHECK - ALL IN
CLOSED
Push OFF
SET
FLAPS UP
PUSH OFF
PUSH OFF
AS DESIRED
FULLEST TANK
OFF
DOWN POSITION

ISSUED 6-94 REV. E 9-95
SECTION IV
NORMAL PROCEDURES

RED Emergency Gear Extension Handle............ DOWN AND LATCHED
Internal Lights.. OFF
Passenger Briefing.................................... COMPLETED

(Emergency and general information briefing)

Refer to SECTION 9 for Optional Equipment Procedures and Checks.

Obtain local information prior to engine start.

ENGINE START

When either battery voltage is low, inspection should be conducted to
determine condition of battery and/or reason for battery being low.
Replacement or servicing of batteries is essential and charging for at least
one hour should be done before engine is started. Batteries must be
serviceable and IT IS RECOMMENDED THAT BATTERIES BE FULLY
CHARGED TO OPERATE AIRCRAFT. Electrical components may also be
damaged if aircraft is operated when batteries are low.

| NOTE |

When starting engine using the approved external power source, no special
starting procedure is necessary. Use normal starting procedures below. DO
NOT START ENGINE IF BOTH BATTERIES ARE INCAPABLE OF STARTING
ENGINE. Recharge dead batteries for at least one hour (at 3-4 amps) before
starting engine. Only No. 1 battery (left side of tailcone) is connected to the
Auxiliary Power plug.

Before Starting Checklist
- Throttle .. FULL OPEN
- Propeller ... FULL FWD (High RPM)
- Mixture .. Full Forward (RICH)
- Master Switch ON
- Alternator Field Switch ON
- Annunciator Lights PRESS TO TEST (All lights should illuminate)
- Low Fuel Boost Pump Switch ON during engine starting sequence

For engine operation at outside air temperatures below -25° C (-13°F), the
engine and engine oil should be preheated to at least -25° C (-13°F) before
the engine is started.

Throttle ... IDLE POSITION
Propeller Area CLEAR
Magneto/Starter Switch TURN & PUSH to START,
release to BOTH when engine starts.
If No. 1 battery will not start engine
SELECT No. 2 battery

| NOTE |

COLD ENGINE START - Low fuel boost pump ON during "Start" sequence.
Turn low fuel boost pump OFF when engine obtains smooth operation.

| NOTE |

"START POWER" warning light should illuminate when Magneto/Starter
switch is in "START" position.

| NOTE |

Cranking should be limited to 30 seconds, and several minutes allowed
between cranking periods to permit the starter to cool.
NORMAL PROCEDURES

Throttle
* Engine Oil Pressure

If minimum oil pressure (10 PSI) is not indicated within 30 seconds, accomplish engine shutdown procedures.

Low Fuel Boost Pump Switch
* Ammeter

Turn LDG LT ON & observe Negative movement of needle.

* Interior/Exterior Lights
* Engine Instruments
* Fuel Flow Indicator
* Throttle
* Mixture

ADJUST FOR SMOOTH OPERATION

CAUTION

Do not operate engine above 1000 RPM unless oil temperature is 75°F (24°C) minimum. Operation of engine above 1000 RPM at temperatures below 75°F (24°C) may damage engine.

FLOODED ENGINE START

<table>
<thead>
<tr>
<th>Throttle</th>
<th>1/2 OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture</td>
<td>IDLE CUT-OFF</td>
</tr>
<tr>
<td>Low Fuel Boost Pump Switch</td>
<td>ON - 6-10 SECONDS THEN OFF</td>
</tr>
<tr>
<td>Magneto/Starter Switch</td>
<td>TURN & PUSH to START release to BOTH when engine starts.</td>
</tr>
<tr>
<td>Mixture</td>
<td>Slowly advance toward RICH until engine starts</td>
</tr>
<tr>
<td>Throttle</td>
<td>IDLE 600 - 700 RPM</td>
</tr>
</tbody>
</table>

SEE ENGINE START PROCEDURES ABOVE * FOR REMAINING SEQUENCES.

WARM ENGINE START

<table>
<thead>
<tr>
<th>Throttle</th>
<th>1/2 to 1 inch OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture</td>
<td>Full Forward (RICH)</td>
</tr>
<tr>
<td>Low Fuel Boost Pump Switch</td>
<td>ON - (TO CLEAR FUEL VAPORS) OFF</td>
</tr>
<tr>
<td>Magneto/Starter Switch</td>
<td>WITHIN 1-2 SECONDS, TURN & PUSH to START release to BOTH when engine starts.</td>
</tr>
<tr>
<td>Throttle</td>
<td>IDLE 600 - 700 RPM</td>
</tr>
</tbody>
</table>

SEE ENGINE START PROCEDURES ABOVE * FOR REMAINING SEQUENCES.

HOT ENGINE START

<table>
<thead>
<tr>
<th>Throttle</th>
<th>FULL OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture</td>
<td>IDLE CUT-OFF</td>
</tr>
<tr>
<td>Boost Pump</td>
<td>HIGH for 5 sec. or LOW for 15 sec. OFF</td>
</tr>
<tr>
<td>Throttle</td>
<td>IDLE POSITION</td>
</tr>
<tr>
<td>Mixture</td>
<td>Full Forward (RICH)</td>
</tr>
<tr>
<td>Magneto/Starter Switch</td>
<td>TURN & PUSH to START release to BOTH when engine starts.</td>
</tr>
<tr>
<td>Throttle</td>
<td>IDLE 600 - 700 RPM</td>
</tr>
</tbody>
</table>

SEE ENGINE START PROCEDURES ABOVE * FOR REMAINING SEQUENCES.

BEFORE TAXI

- Engine Start Checklist: COMPLETED
- Radio Master Switch: ON
- Elevator Trim Switch: ON
- Internal/External Lights: As Desired
- Directional Gyro: SET or Slave switch ON
- Stand-by Vacuum Pump Operational Check: STBY VAC Switch - VISIBLE

ISSUED 6-94

REV. F 9-96 4-9
BEFORE TAXI (cont.)

Stand-by vacuum operational indicator red button - NOT VISIBLE
STBY VAC Switch

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Normal Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radios</td>
<td>CHECKED and SET</td>
</tr>
<tr>
<td>Altimeter</td>
<td>SET</td>
</tr>
<tr>
<td>Fuel Selector</td>
<td>SWITCH TANKS verify engine runs on other tank</td>
</tr>
<tr>
<td>Cabin Heat</td>
<td>AS DESIRED</td>
</tr>
<tr>
<td>Defroster</td>
<td>AS DESIRED</td>
</tr>
<tr>
<td>Cabin Vent</td>
<td>AS DESIRED</td>
</tr>
<tr>
<td>Optional Equipment Checks</td>
<td>Reference SECTION IX.</td>
</tr>
</tbody>
</table>

BEFORE TAKEOFF

Taxi Checklist
COMPLETED

<table>
<thead>
<tr>
<th>Parking brake</th>
<th>RELEASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brakes</td>
<td>CHECK during TAXI</td>
</tr>
<tr>
<td>Directional Gyro</td>
<td>Proper indication during turns</td>
</tr>
<tr>
<td>Turn Coordinator</td>
<td>Proper indication during turns</td>
</tr>
<tr>
<td>Artificial Horizon</td>
<td>ERECT during turns</td>
</tr>
<tr>
<td>Throttle</td>
<td>Minimum power</td>
</tr>
<tr>
<td>Propeller</td>
<td>Full Forward (HIGH RPM)</td>
</tr>
</tbody>
</table>

An absence of RPM drop may be an indication of faulty magneto grounding or improper timing. If there is doubt concerning ignition system operation, RPM checks at a leaner mixture setting or higher engine speed will usually confirm whether a deficiency exists.
MOONEY M20R

SECTION IV
NORMAL PROCEDURES

Elevator Trim ... TAKEOFF SETTING
Rudder Trim .. TAKEOFF SETTING
Wing Flaps .. CHECK operation.

SET AT TAKEOFF position (10 Degrees)
Flight Controls ... CHECK free and correct movement
Cabin Door .. CHECK SECURED
Seats, Seat Belts and Shoulder Harness SECURED
Avionics and Auto Pilot (Refer to SECTION IX)
Annunciator Lights ... AS DESIRED
Internal/External Lights CHECK
Strobe Lights/Rotating Beacon ON
Pilots Window ... CLOSED
Emergency Gear Extension (RED) Handle DOWN & LATCHED

Oil Temperature .. 75°F (24°C) minimum
CHT .. 250°F (121°C) minimum
Parking Brake .. RELEASE

TAKEOFF

Proper engine operation should be checked early in the takeoff roll. Any significant indication of rough or sluggish engine response is reason to discontinue takeoff.

When takeoff must be made over a gravel surface, it is important that the throttle be applied SLOWLY. This will allow the aircraft to start rolling before high RPM is developed, and gravel or loose material will be blown back from the propeller area instead of being pulled into it.

TAKEOFF (NORMAL)

Power .. FULL THROTTLE (2500 RPM)
Annunciator ... CHECK
Engine Instruments .. As specified in SECTION 5 (Takeoff Distance)
Lift Off/Climb Speed RETRACT IN CLimb after clearing obstacles.
Landing Gear ... UP
Wing Flaps ..

| NOTE |
If maximum performance takeoffs are desired obtain full power before brake release. Use lift off and climb speed as specified in SECTION 5.

CLimb

| NOTE |
If applicable, use noise abatement procedures as required.

| NOTE |
See SECTION 5, for rate of climb graph.

CLimb (CRUISE)

Power .. 2500 RPM
Manifold Pressure .. 24 Inches
Mixture ... FULL RICH or BLUE ARC on EGT
Rudder Trim .. As Desired
Airspeed ... 120 KIAS

CLimb (BEST RATE)(Vy)

Power .. FULL THROTTLE / 2500 RPM
Mixture ... FULL RICH or BLUE ARC on EGT
Rudder Trim .. As Desired
Airspeed ... 105 KIAS

ISSUED 6 - 94 REV. F 9 - 96 4 - 11
Mooney M20R

Power: FULL THROTTLE/2500 RPM
Mixture: FULL RICH
Rudder Trim: As Desired
Airspeed: 85 KIAS

Leaning may be required during CLIMB depending on atmospheric conditions.

Cruise

Use recommended engine break-in procedures as published by engine manufacturer.

Airspeed: ACCELERATE to cruise airspeed
Throttle: SELECTED SETTING

(Ref. CRUISE PERFORMANCE CHARTS in SECTION 5)

Prolonged climbs to high cruise altitudes during hot weather operations may result in some fuel flow fluctuations as throttle is reduced. If fluctuations occur, turn Low Boost Pump Switch ON until cooling has alleviated fluctuations.

Propeller: Set RPM to selected setting
Mixture: LEAN TO 50°F rich of PEAK EGT

Cruise operation at BEST POWER will result in a substantial increase in fuel flow, greatly decreasing range and endurance; reference charts published in SECTION 5.

Engine instruments: CHECK

Careful leaning of mixture control will result in best fuel efficiency. This requires operating at proper EGT. Failure to do so will result in excessive fuel burn. After leveling off at cruise altitude, set RPM for desired power setting per Cruise Power Chart in Section V. Slowly lean Mixture until EGT reaches peak value. Enrichen to 50°F rich of peak EGT for best power (50°F lean of peak is best economy); careful adjustments are necessary for accurate setting. Changes in altitude or power MAY REQUIRE readjustment of EGT.

Engine temperatures: STABILIZE at cruise condition.
Rudder Trim: As Desired

When increasing power, always return mixture to full rich, then increase RPM before increasing manifold pressure; when decreasing power, decrease manifold pressure before reducing RPM. Always stay within the established operating limits, and always operate the controls slowly and smoothly.

Fuel Tank Selection

Low Fuel Boost Pump Switch: ON
Fuel Selector: OPPOSITE TANK
Low Fuel Boost Pump Switch: OFF

4 - 12

REV. F 9 - 96

ISSUED 6 - 94
MOONEY
M20R

SECTION IV
NORMAL PROCEDURES

OXYGEN SYSTEM
(OPTIONAL EQUIPMENT)

WARNING

Greasy lipsticks and waxed mustaches have been known to ignite spontaneously inside oxygen masks. Passengers should be suitably advised prior to flight.

For safety reasons NO SMOKING should be allowed in the airplane while oxygen is being used.

When ready to use the oxygen system, proceed as follows:
- Mask and Hose: Adjust mask to face and adjust metallic nose strap for snug mask fit.
- Delivery Hose: PLUG INTO OUTLET assigned to that seat.

When the oxygen system is turned ON, oxygen will flow continuously at the appropriate rate of flow for the altitude without any manual adjustments.

Oxygen Supply Control Knob: ON.
Face Mask Hose Flow Indicator: CHECK.
Delivery Hose: UNPLUG from outlet when discontinuing use of oxygen.
Oxygen Supply Control Knob: OFF - when oxygen is no longer required.

Proper oxygen flow is critical to pilot/passenger safety, especially at altitudes above 20,000 ft. MSL. It is important to closely monitor the face mask hose flow indicator to ensure oxygen is constantly flowing to the mask. A GREEN indication on the flow indicator denotes proper oxygen flow. Always place the flow indicator in a position where it is in the normal scan area of the cockpit.

Refer to duration chart (Fig. 7-13) for safe operational quantities.

DESCENT

Avoid extended descents at low manifold pressure setting, as engine can cool excessively and may not accelerate satisfactorily when power is re-applied.

NORMAL DESCENT - GEAR UP

<table>
<thead>
<tr>
<th>Seats, Seat Belts/Shoulder Harness</th>
<th>ADJUST AND SECURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing Flaps</td>
<td>UP</td>
</tr>
<tr>
<td>Landing Gear</td>
<td>UP</td>
</tr>
<tr>
<td>Throttle</td>
<td>CHT in Green</td>
</tr>
<tr>
<td>Propeller</td>
<td>2400 RPM</td>
</tr>
<tr>
<td>Mixture</td>
<td>Peak EGT (Monitor as descent progresses)</td>
</tr>
<tr>
<td>Cylinder Head Temperature (CHT)</td>
<td>MONITOR [250°F (121°C) minimum]</td>
</tr>
<tr>
<td>Airspeed</td>
<td>AS DESIRED (AS DESIRED)</td>
</tr>
<tr>
<td>Rudder Trim</td>
<td></td>
</tr>
</tbody>
</table>

ISSUED 6 - 94 REv. E 9 - 95 4 - 13
SECTION IV
NORMAL PROCEDURES

| NOTE |
Plan descents to arrive at pattern altitude on downwind leg for maximum fuel efficiency and minimum aircraft noise.

~ CAUTION ~

DO NOT fly in YELLOW ARC speed range unless the air is smooth.

NORMAL DESCENT - GEAR DOWN

<table>
<thead>
<tr>
<th>Seats, Seat Belts/Shoulder Harness</th>
<th>ADJUST AND SECURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing Flaps</td>
<td>UP</td>
</tr>
<tr>
<td>Airspeed</td>
<td>DECELERATE to 140 KIAS</td>
</tr>
<tr>
<td>Throttle</td>
<td>KEEP CHT in Green Arc</td>
</tr>
<tr>
<td>Propeller</td>
<td>2400 RPM</td>
</tr>
<tr>
<td>Mixture</td>
<td>Peak EGT (Monitor as descent progresses)</td>
</tr>
<tr>
<td>Cylinder Head Temperature (CHT)</td>
<td>Monitor (250°F (121°C) min)</td>
</tr>
<tr>
<td>Airspeed</td>
<td>165 KIAS or LESS.</td>
</tr>
</tbody>
</table>

| NOTE |
Using landing gear as a descent aid will result in a steeper descent rate (greater altitude loss per horizontal distance traveled).

APPROACH FOR LANDING

~ CAUTION ~

The airplane must be within allowable weight and balance envelope for landing (REF. SECTION VI). It will require a minimum of one hour of flight before a permissible landing weight is attained when takeoffs are made at maximum gross weight. If landing at a weight exceeding maximum landing weight (3200 Lbs.) (1452 Kgs.) is required, see OVERWEIGHT LANDING PROCEDURE, SECTION III.

<table>
<thead>
<tr>
<th>Seats, Seat Belts/Shoulder Harness</th>
<th>ADJUST AND SECURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal/External lights</td>
<td>AS DESIRED</td>
</tr>
<tr>
<td>Landing Gear</td>
<td>EXTEND below 140 KIAS</td>
</tr>
<tr>
<td>(Check Gear Down light ON-Check visual indicator)</td>
<td></td>
</tr>
<tr>
<td>Mixture</td>
<td>FULL RICH (on final)</td>
</tr>
<tr>
<td>Propeller</td>
<td>HIGH RPM (on final)</td>
</tr>
<tr>
<td>Fuel Boost Pump Switches</td>
<td>OFF</td>
</tr>
<tr>
<td>Fuel Selector</td>
<td>T/O POSITION</td>
</tr>
<tr>
<td>Wing Flaps</td>
<td>(FULL DOWN below 110 KIAS)</td>
</tr>
</tbody>
</table>

| NOTE |
To minimize control wheel forces when entering landing configuration, timely nose-up trimming is recommended to counteract nose down pitching moment caused by reduction of power and/or extension of flaps.

<table>
<thead>
<tr>
<th>Elevator Trim</th>
<th>AS DESIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rudder Trim</td>
<td>AS DESIRED</td>
</tr>
<tr>
<td>Parking Brake</td>
<td>VERIFY OFF</td>
</tr>
</tbody>
</table>

| NOTE |
The parking brake should be rechecked to preclude partially applied brakes during touchdown.
GO AROUND (BALKED LANDING)

To minimize control wheel forces during GO-AROUND, timely nose-down trimming is recommended to counteract nose up pitching moment as power is increased and/or flaps are retracted.

Power
Mixture
Fuel Boost Pump Switches
Wing Flaps
Trim
Airspeed
Landing Gear
Wing Flaps
Airspeed

FULL FORWARD (2500 RPM)
Verify FULL RICH
OFF
TAKEOFF POSITION (10°)
(After POSITIVE climb established)
NOSE DOWN to reduce forces
.85 KIAS
RETRACT
RETRACT

LANDING

LANDING (NORMAL)

Approach for Landing Checklist
Approach Airspeed
Touchdown
Landing Roll
Brakes

As specified in SECTION V (Landing Distance)
MAIN WHEELS FIRST (aligned w/ runway)
LOWER nose wheel gently
MINIMUM required

NOTE
Landing information for reduced flap settings is not available. See SECTION V for Landing Distance tables.

NOTE
If maximum performance landings are desired, use above procedures except, reduce approach airspeed to 70 KIAS (flaps full down) and apply maximum braking (without skidding tires) during rollout.

NOTE
Crosswind landings should be accomplished by using above procedures except maintain approach speed appropriate for wind conditions. Allow aircraft to crab until the landing flare. Accomplish touchdown in a slight wing low sideslip (low wing into wind) and aircraft aligned with runway. During landing roll, position flight controls to counteract crosswind.

CAUTION

Landings gear may retract during landing roll if landing gear switch is placed in the UP position.

TAXI AFTER LANDING

Throttle
Fuel Boost Pump Switches
Wing Flaps
Elevator Trim
Avionics/Radios
Interior/Exterior Lights

AS REQUIRED
OFF
RETRACT
TAKEOFF SETTING
AS REQUIRED
AS DESIRED

ISSUED 6 - 94
SECTION IV
NORMAL PROCEDURES

SHUTDOWN

<table>
<thead>
<tr>
<th>Switch/Component</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Brake</td>
<td>SET</td>
</tr>
<tr>
<td>Throttle</td>
<td>IDLE RPM</td>
</tr>
<tr>
<td>Radio Master Switch</td>
<td>OFF</td>
</tr>
<tr>
<td>Interior/Exterior Lights</td>
<td>OFF</td>
</tr>
<tr>
<td>Pilot Heat</td>
<td>OFF</td>
</tr>
<tr>
<td>Magneto/Starter Switch</td>
<td>GROUNDING CHECK</td>
</tr>
<tr>
<td>Mixture</td>
<td>IDLE CUT-OFF</td>
</tr>
<tr>
<td>Alternator Field Switch</td>
<td>OFF</td>
</tr>
<tr>
<td>Master Switch</td>
<td>OFF</td>
</tr>
<tr>
<td>Magneto/Starter Switch</td>
<td>OFF</td>
</tr>
</tbody>
</table>

SECURING AIRCRAFT

<table>
<thead>
<tr>
<th>Switch/Component</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magneto/Starter Switch</td>
<td>VERIFY OFF/ Key removed</td>
</tr>
<tr>
<td>Master Switch</td>
<td>VERIFY OFF</td>
</tr>
<tr>
<td>Radio Master Switch</td>
<td>Verify OFF</td>
</tr>
<tr>
<td>Electrical Switches</td>
<td>Verify OFF</td>
</tr>
<tr>
<td>Interior Light Switches</td>
<td>VERIFY OFF</td>
</tr>
<tr>
<td>Parking Brake</td>
<td>RELEASE - INSTALL WHEEL CHOCKS</td>
</tr>
<tr>
<td>Extended parking</td>
<td>CONTROL WHEEL SECURED</td>
</tr>
<tr>
<td>Cabin Windows and Doors</td>
<td>CLOSED AND LOCKED</td>
</tr>
</tbody>
</table>

TIE DOWN AIRCRAFT at wing and tail points.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5-3</td>
</tr>
<tr>
<td>Variables</td>
<td>5-3</td>
</tr>
<tr>
<td>Operational Procedures for Maximum Fuel Efficiency</td>
<td>5-3</td>
</tr>
<tr>
<td>Performance Considerations</td>
<td>5-4</td>
</tr>
<tr>
<td>Mission Profile Charts</td>
<td>5-4</td>
</tr>
</tbody>
</table>

- TABLES AND CHARTS -

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Conversion</td>
<td>5-5</td>
</tr>
<tr>
<td>Crosswind Component Chart</td>
<td>5-6</td>
</tr>
<tr>
<td>Airspeed Calibration - Primary Static System (Gear Up)</td>
<td>5-7</td>
</tr>
<tr>
<td>Airspeed Calibration - Primary Static System (Gear Down)</td>
<td>5-8</td>
</tr>
<tr>
<td>Airspeed Calibration - Alternate Static System</td>
<td>5-9</td>
</tr>
<tr>
<td>Altimeter Correction - Primary Static System (Gear Up, Flaps Up)</td>
<td>5-10</td>
</tr>
<tr>
<td>Altimeter Correction - Alternate Static System (Gear Down, Flaps Down)</td>
<td>5-11</td>
</tr>
<tr>
<td>Stall Speed vs Angle of Bank</td>
<td>5-12</td>
</tr>
<tr>
<td>Takeoff Distance - Hard Surface</td>
<td>5-13</td>
</tr>
<tr>
<td>Takeoff Distance - Grass Surface</td>
<td>5-14</td>
</tr>
<tr>
<td>Rate of Climb - Max Climb</td>
<td>5-15</td>
</tr>
<tr>
<td>Rate of Climb - Cruise Climb</td>
<td>5-16</td>
</tr>
<tr>
<td>Time-Fuel-Distance to Climb - Max Climb</td>
<td>5-17</td>
</tr>
<tr>
<td>Time-Fuel-Distance to Climb - Cruise Climb</td>
<td>5-18</td>
</tr>
<tr>
<td>Cruise Power Settings and Fuel Flows</td>
<td>5-19</td>
</tr>
<tr>
<td>Speed Power vs Altitude</td>
<td>5-20</td>
</tr>
<tr>
<td>Range</td>
<td>5-21</td>
</tr>
<tr>
<td>Endurance</td>
<td>5-22</td>
</tr>
<tr>
<td>Time-Fuel-Distance to Descend</td>
<td>5-23</td>
</tr>
<tr>
<td>Landing Distance - Hard Surface</td>
<td>5-24</td>
</tr>
<tr>
<td>Landing Distance - Grass Surface</td>
<td>5-25</td>
</tr>
<tr>
<td>Mission Profile - 200</td>
<td>5-26</td>
</tr>
<tr>
<td>Mission Profile - 400</td>
<td>5-27</td>
</tr>
<tr>
<td>Mission Profile - 600</td>
<td>5-28</td>
</tr>
<tr>
<td>Mission Profile - 800</td>
<td>5-29</td>
</tr>
</tbody>
</table>

Issued: 6 - 94
Rev.: C 9 - 94
The purpose of this section is to present the owner or operator with information needed to facilitate planning of flights with reasonable accuracy. The Performance Data and charts presented herein are calculated, based on actual flight tests with the airplane and engine in good condition and the engine power control system properly adjusted. The flight test data has been corrected to International Standard Atmosphere conditions and then expanded analytically to cover various airplane gross weights, operating altitudes, and outside air temperatures.

VARIABLES

It is not possible to make allowances in the charts for varying levels of pilot technique, proficiency or environmental conditions. Mechanical or aerodynamic changes are not authorized because they can affect the performance or flight characteristics of the airplane. The effect of such things as soft runways, sloped runways, winds aloft or airplane configuration changes must be evaluated by the pilot. However, the performance on the charts can be duplicated by following the stated procedures in a properly maintained, standard MOONEY M20R.

Examples are given to show how each chart is used. The only charts with no example are those where such an example of use would be repetitive.

To obtain effect of altitude and OAT on aircraft performance:

1. Set altimeter to 29.92 and read "pressure altitude".
2. Using the OAT grid for the applicable chart read the corresponding effect of OAT on performance.

```~ CAUTION ~
Be sure to return to local altimeter setting in calculating aircraft elevation above sea level.
```

OPERATIONAL PROCEDURES FOR MAXIMUM FUEL EFFICIENCY

For maximum fuel efficiency on the M20R, proper mixture leaning during cruise flight must be accomplished. The TCM IO-550-G(5) engine in the M20R has been designed to attain maximum fuel efficiency at desired cruise power. Best power mixture (at 2400 RPM) has been determined to be 50°F (10°C) rich of peak EGT. EGT is usually a more accurate indication of engine operation and fuel burn than indicated fuel flow. Therefore, it is recommended that the mixture be set using EGT as the primary reference instead of setting to a particular fuel flow.

The following procedures is recommended for setting cruise power and leaning to best economy at 75% power or less.

1. After leveling off, set manifold pressure and RPM for the desired cruise power settings as shown in this SECTION. At this point, mixture is at full rich from the climb.
2. Slowly move mixture control toward lean while observing EGT indicator. If leaning mixture toward peak EGT causes the original manifold pressure setting to change, adjust throttle to maintain that desired cruise manifold pressure and continue leaning until best economy setting is obtained.
PERFORMANCE CONSIDERATIONS

RANGE and ENDURANCE ASSUMPTIONS

Range and endurance allowance is based on climbing at maximum continuous power to cruise altitude. Range and endurance reserves of 45 minutes at cruise power have been allowed for. Other conditions used for Range and Endurance are listed on each chart.

OPTIONAL PROPELLER DE-ICE BOOTS

With the optional propeller de-ice boots installed, expect climb performance to be degraded approximately 50 FPM from what is presented in the manual.

LANDING GEAR DOORS

When snow and ice are likely to be present on taxi and runway surfaces, inboard landing gear doors should be removed. Accumulation of ice and snow could prevent landing gear operation. If inboard landing gear doors are removed, a decrease in cruise speed and range can be expected and should be considered in preflight planning. To be conservative the following figures should be used:

- Decrease of true airspeed at normal cruise power setting by approximately 5 KTAS.

An approximate adjustment to range data shown in this manual can be made based on flight time planned with landing gear doors removed from aircraft. For example, using the above cruise speed decrease for a 5 hour flight will result in a decrease in range of approximately 25 N.M.:

\[5 \text{ HR} \times 5 \text{ KTS} = 25 \text{ N.M. reduction in range.} \]

MISSION PROFILE CHARTS

The Mission Profile Charts are presented as a flight planning aid. They can provide information to assist in the selection of altitude and power setting to fly as well as provide the flight time and fuel to fly a given distance.

The charts are based on the following:

- Fuel used to warmup, taxi and takeoff.
- Time and fuel to climb at maximum power.
- Time and fuel to cruise at the specified power setting.
- Cruise with gear and flaps UP.
- Time and fuel to descend at 750 FPM at 150 KIAS.
- Zero wind.
- Gross weight.

~ CAUTION ~

Zero wind conditions seldom occur. In addition, varying atmospheric conditions, aircraft weight, mechanical condition of the aircraft and piloting techniques all affect the actual flight time and fuel used during a flight.

It is the pilot's responsibility to determine the actual operating conditions and plan the flight accordingly.
TEMPERATURE CONVERSION

°Fahrenheit °Celsius

-40 -40
-30
-20
-10
0 0
10 10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160

70
60
50
40
30
20
10
0
-10
-20
-30
-40

ISSUED 6-94
CROSSWIND COMPONENT CHART

EXAMPLE:
WIND SPEED 20 KNOTS
ANGLE BETWEEN WIND 35°
DIRECTION AND FLIGHT PATH 35°
HEADWIND COMPONENT 16.4 KNOTS
CROSSWIND COMPONENT 11.2 KNOTS

DEMONSTRATED CROSS WIND IS 13 KNOTS
(THIS IS NOT A LIMITATION)
AIRSPEED CALIBRATION - PRIMARY STATIC SYSTEM (GEAR UP)

NOTE:
INDICATED AIRSPEED ASSUMES ZERO INSTRUMENT ERROR

EXAMPLE:
GIVEN: IAS 129 KNOTS
FIND: CAS 130 KNOTS

ISSUED 6-94
EXAMPLE:
GIVEN: IAS 80 KTS
FLAPS 10
POWER OFF
FIND: CAS 79 KTS

NOTE: INDICATED AIRSPEED Assumes ZERO INSTRUMENT ERROR
AIRSPEED CALIBRATION - ALTERNATE STATIC SYSTEM

<table>
<thead>
<tr>
<th>KIAS</th>
<th>GEAR & FLAPS</th>
<th>GEAR & FLAPS</th>
<th>GEAR & FLAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UP KIAS</td>
<td>DN (10°)</td>
<td>DN (33°)</td>
</tr>
<tr>
<td>50</td>
<td>3.0</td>
<td>0.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>60</td>
<td>1.5</td>
<td>-1.2</td>
<td>-2.0</td>
</tr>
<tr>
<td>70</td>
<td>0.0</td>
<td>-2.2</td>
<td>-3.2</td>
</tr>
<tr>
<td>80</td>
<td>-1.8</td>
<td>-3.2</td>
<td>-4.5</td>
</tr>
<tr>
<td>90</td>
<td>-2.8</td>
<td>-4.0</td>
<td>-6.0</td>
</tr>
<tr>
<td>100</td>
<td>-3.0</td>
<td>-4.7</td>
<td>-7.4</td>
</tr>
<tr>
<td>110</td>
<td>-3.0</td>
<td>-5.4</td>
<td>-8.8</td>
</tr>
<tr>
<td>120</td>
<td>-3.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>130</td>
<td>-3.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>140</td>
<td>-4.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-5.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>160</td>
<td>-5.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>170</td>
<td>-6.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>180</td>
<td>-6.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>190</td>
<td>-7.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>-7.9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE: The minus sign indicates subtraction of the given numbers from KIAS to obtain the corrected airspeed.

CONDITIONS: Power-ON, Storm Window & Vents - CLOSED, Heater & Defroster - ON or OFF

ISSUED 6 - 94
Altimeter Correction - Primary Static System

Sea Level

<table>
<thead>
<tr>
<th>KIAS (KIAS)</th>
<th>Gear & Flaps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gear Dn/10º</td>
<td>Gear Dn/33º</td>
<td>Gear Dn/10º</td>
<td>Gear Dn/33º</td>
<td>Gear Dn/33º</td>
</tr>
<tr>
<td></td>
<td>Flaps UP</td>
<td>Flaps</td>
<td>Flaps</td>
<td>Flaps</td>
<td>Flaps</td>
</tr>
<tr>
<td>50</td>
<td>-2</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>7</td>
</tr>
<tr>
<td>60</td>
<td>-3</td>
<td>3</td>
<td>-5</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td>70</td>
<td>-3</td>
<td>-2</td>
<td>-9</td>
<td>-5</td>
<td>-3</td>
</tr>
<tr>
<td>80</td>
<td>-4</td>
<td>-8</td>
<td>-14</td>
<td>-6</td>
<td>-12</td>
</tr>
<tr>
<td>90</td>
<td>-8</td>
<td>-11</td>
<td>-19</td>
<td>-12</td>
<td>-17</td>
</tr>
<tr>
<td>100</td>
<td>-6</td>
<td>-11</td>
<td>-22</td>
<td>-9</td>
<td>-16</td>
</tr>
<tr>
<td>110</td>
<td>2</td>
<td>-5</td>
<td>-23</td>
<td>2</td>
<td>-7</td>
</tr>
<tr>
<td>120</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>130</td>
<td>21</td>
<td>—</td>
<td>—</td>
<td>31</td>
<td>—</td>
</tr>
<tr>
<td>140</td>
<td>23</td>
<td>—</td>
<td>—</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>150</td>
<td>15</td>
<td>—</td>
<td>—</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>160</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>17</td>
<td>—</td>
</tr>
<tr>
<td>170</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>180</td>
<td>8</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>—</td>
</tr>
<tr>
<td>190</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>200</td>
<td>12</td>
<td>—</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
</tbody>
</table>

NOTE: The minus sign indicates subtraction of the given numbers from the indicated pressure altitude to obtain correct altitude, assuming zero instrument error.

EXAMPLE:

KIAS = 110 ALTIMETER CORRECTION: -7 ft.
FLAPS = 10º (Subtract from Indicated Altitude)

INDICATED PRESSURE ALTITUDE: 12,500 ft. **PRESSURE ALTITUDE:** = 12,493 ft.

I SSUED 6 - 94
Altimeter Correction - Alternate Static System

Table

<table>
<thead>
<tr>
<th>KIAS</th>
<th>Gear & Flaps Up 10° 33°</th>
<th>Gear & Flaps Down 10° 33°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sea Level 12,500 FT.</td>
<td>25,000 FT.</td>
</tr>
<tr>
<td>50</td>
<td>13 0 -4</td>
<td>20 0 -7</td>
</tr>
<tr>
<td>60</td>
<td>8 -6 -11</td>
<td>12 -9 -16</td>
</tr>
<tr>
<td>70</td>
<td>0 -14 -20</td>
<td>0 -20 -29</td>
</tr>
<tr>
<td>80</td>
<td>-13 -23 -32</td>
<td>-19 -34 -47</td>
</tr>
<tr>
<td>110</td>
<td>-30 -53 -87</td>
<td>-43 -78 -127</td>
</tr>
<tr>
<td>120</td>
<td>-32 - -</td>
<td>-48 - -</td>
</tr>
<tr>
<td>130</td>
<td>-53 - -</td>
<td>-77 - -</td>
</tr>
<tr>
<td>140</td>
<td>-57 - -</td>
<td>-84 - -</td>
</tr>
<tr>
<td>150</td>
<td>-69 - -</td>
<td>-102 - -</td>
</tr>
<tr>
<td>160</td>
<td>-82 - -</td>
<td>-128 - -</td>
</tr>
<tr>
<td>170</td>
<td>-95 - -</td>
<td>-139 - -</td>
</tr>
<tr>
<td>180</td>
<td>-107 - -</td>
<td>-158 - -</td>
</tr>
<tr>
<td>190</td>
<td>-126 - -</td>
<td>-185 - -</td>
</tr>
<tr>
<td>200</td>
<td>-146 - -</td>
<td>-215 - -</td>
</tr>
</tbody>
</table>

NOTE: The minus sign indicates subtraction of the given number from the indicated altitude to obtain the corrected altitude.

CONDITIONS: Power -ON, Vents & Storm Window - CLOSED, Heater & Defroster - ON or OFF.

ISSUED 6 - 94
Stall Speed vs. Angle of Bank

Associated Conditions:
- Forward C.G.
- Power Idle

Note: Up to 500 feet altitude loss may occur during stalls at maximum weight.

Chart

<table>
<thead>
<tr>
<th>Gross Weight</th>
<th>Gear and Flap Position</th>
<th>Angle of Bank (°)</th>
<th>KCAS</th>
<th>KIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3368 LBS (1528 KGS)</td>
<td>Gear Up, Flaps 0°</td>
<td>0°</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>71.0</td>
<td>71.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>78.5</td>
<td>79.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>93.5</td>
<td>94.0</td>
</tr>
<tr>
<td></td>
<td>Gear Down, Flaps 10°</td>
<td></td>
<td>64.5</td>
<td>64.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>69.5</td>
<td>69.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>76.5</td>
<td>77.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>91.0</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>Gear Down, Flaps 33°</td>
<td></td>
<td>59.0</td>
<td>59.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>63.5</td>
<td>63.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>70.0</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>83.5</td>
<td>84.5</td>
</tr>
<tr>
<td>3000 LBS (1361 KGS)</td>
<td>Gear Up, Flaps 0°</td>
<td></td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>67.0</td>
<td>67.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>74.5</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>88.5</td>
<td>89.5</td>
</tr>
<tr>
<td></td>
<td>Gear Down, Flaps 10°</td>
<td></td>
<td>61.0</td>
<td>61.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>65.5</td>
<td>65.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>72.5</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>86.5</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td>Gear Down, Flaps 33°</td>
<td></td>
<td>55.5</td>
<td>55.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>59.5</td>
<td>59.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>66.0</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>78.5</td>
<td>79.5</td>
</tr>
<tr>
<td>2700 LBS (1225 KGS)</td>
<td>Gear Up, Flaps 0°</td>
<td></td>
<td>59.0</td>
<td>59.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>63.5</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>70.0</td>
<td>70.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>83.5</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td>Gear Down, Flaps 10°</td>
<td></td>
<td>58.0</td>
<td>58.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>62.5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>69.0</td>
<td>69.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>82.0</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td>Gear Down, Flaps 33°</td>
<td></td>
<td>53.0</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30°</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45°</td>
<td>63.0</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°</td>
<td>75.0</td>
<td>76.0</td>
</tr>
</tbody>
</table>
TAKEOFF DISTANCE

TAKEOFF WEIGHT—LBS (KGS)	TAKEOFF SPEED KIAS	SPEED AT 50 FT-KIAS
3368 LBS (1528 KGS) | 86 | 80
5100 LBS (1406 KGS) | 54 | 78
2700 LBS (1225 KGS) | 59 | 74

ASSOCIATED CONDITIONS

POWER | FULL THROTTLE/2500 RPM
LDG GEAR | DOWN UNTIL OBSTACLE CLEARED
WING FLAPS | 10°
RWY SURF. | PAVED
LEVEL, DRY

EXAMPLE:

OAT | 17°C
PRESSURE | 5000 FT
ALTITUDE |
WEIGHT | 3250 LBS (1474 KGS)
HEADWIND | 5 KTS
COMPONENT |
GROUND ROLL | 1550 FT (472 M)
TOTAL TAKEOFF DISTANCE (50 FT OBSTACLE) | 2900 FT (884 M)

NOTE:
1. MAXIMUM DEMONSTRATED CROSSWIND IS 13 KNOTS.
2. CONDITIONS OF HIGH HUMIDITY CAN RESULT IN AN INCREASE OF UP TO 10% TO THE TAKEOFF DISTANCE.
SECTION V
PERFORMANCE

TAKEOFF DISTANCE - GRASS SURFACE

<table>
<thead>
<tr>
<th>TAKEOFF WEIGHT - LBS (KGS)</th>
<th>TAKEOFF SPEED KIAS</th>
<th>SPEED AT 50 FT - KIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3368 LBS (1528 KGS)</td>
<td>66</td>
<td>80</td>
</tr>
<tr>
<td>3100 LBS (1406 KGS)</td>
<td>64</td>
<td>78</td>
</tr>
<tr>
<td>2700 LBS (1225 KGS)</td>
<td>59</td>
<td>74</td>
</tr>
</tbody>
</table>

ASSOCIATED CONDITIONS

POWER: FULL THROTTLE/2500 RPM
LDG GEAR: DOWN UNTIL OBSTACLE CLEARED
WING FLAPS: 10°
RWY SURF.: SHORT DRY GRASS, LEVEL

EXAMPLE:
OAT: 17°C
PRESSURE: 5000 FT
ALTITUDE: 3250 LBS (1474 KGS)
WEIGHT: 5 KTS
HEADWIND: COMPONENT
GROUND ROLL: 1745 FT (532 M)
TOTAL TAKEOFF DISTANCE (50 FT OBSTACLE): 3095 FT (943 M)

NOTE: 1. MAXIMUM DEMONSTRATED CROSSWIND IS 13 KNOTS.
2. CONDITIONS OF HIGH HUMIDITY CAN RESULT IN AN INCREASE OF UP TO 10% TO THE TAKEOFF DISTANCE.
MAXIMUM RATE OF CLIMB

FULL THROTTLE, 2500 RPM, 105 KIAS, FULL RICH, GEAR UP, FLAPS UP

EXAMPLE:
PRESS ALT 6,000 FT
OAT 15°C
WEIGHT 2,850 LBS
RATE OF CLIMB 1000 FPM

OUTSIDE AIR TEMPERATURE - °C
WEIGHT - LBS

RATE OF CLIMB - FEET/MIN

PRESSURE ALTITUDE

Sea Level
2000 FT
4000 FT
6000 FT
8000 FT
10000 FT
12000 FT
14000 FT
16000 FT
18000 FT
20000 FT
Cruise Climb

Rate of Climb - Feet/Min

Full Throttle, 2500 RPM, 120 KIAS, Full Rich, Gear Up, Flaps Up

Example:
- Press Alt: 2,000 FT
- OAT: 15°C
- Weight: 2,250 LBS
- Rate of Climb: 923 FPM

Out Air Temperature - °C

Outside Air Temperature - °C

Weight - LBS

Weight - KGs

Pressure Altitude

Sea Level

Pilot Information

1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
80
60
40
20
0
-20
-40
-60
-80
10000 FT
8000 FT
6000 FT
4000 FT
2000 FT
0
TIME—FUEL—DISTANCE TO CLimb (MAX RATE)
FULL THROTTLE, 2500 RPM, 105 KIAS, FULL RICH, GEAR UP, FLAPS UP

EXAMPLE:
DEPARTURE PRESS ALT: 1,000 FT
DEPARTURE OAT: 30 °C
CRUISE PRESS ALT: 12,000 FT
CRUISE OAT: 10 °C
WEIGHT: 3200 LBS
FUEL TO CLimb: 5.0-0.4=4.6 GAL
TIME TO CLimb: 19.0-0.8=18.2 MIN
DISTANCE TO CLimb: 37.2-1.7=35.5 NM

OUTSIDE AIR TEMPERATURE °C
FUEL—GALLONS, TIME—MINUTES, DISTANCE—NAUTICAL MILES
(LITERS = GALLONS X 3.785 KILOMETERS = NAUTICAL MILES X 1.852)
TIME—FUEL—DISTANCE TO CLIMB (CRUISE CLIMB)
FULL THROTTLE, 2500 RPM, 120 KIAS, FULL RICH, GEAR UP, FLAPS UP

EXAMPLE:
DEPARTURE PRESS ALT: 1,000 FT
DEPARTURE OAT: 30 °C
CRUISE PRESS ALT: 8,000 FT
CRUISE OAT: 10 °C
WEIGHT: 3200 LBS
FUEL TO CLIMB: 4.3–0.4–3.9 GALLON
TIME TO CLIMB: 14.4–1.0–13.4 MIN
DISTANCE TO CLIMB: 30.8–2.3–28.5 NAUTICAL MILES

OUTSIDE AIR TEMPERATURE — °C
-80 -60 -40 -20 0 20 40 60
FUEL—GALLONS, TIME—MINUTES, DISTANCE—NAUTICAL MILES
(PERFORMANCE)

REV. C 9-94
ISSUED 6-94

MOONEY M20R

(LITERS = GALLONS X 3.785 KILOMETERS = NAUTICAL MILES X 1.852)
M20R CRUISE POWER SETTINGS AND FUEL FLOWS

1. **BEST POWER** is 50°F Rich of Peak.
2. **ECONOMY CRUISE** is 50°F Lean of Peak.

<table>
<thead>
<tr>
<th>RPM/MP</th>
<th>2400/22.9</th>
<th>Fuel Flow</th>
<th>15.6 (Best Power)</th>
<th>Max. Recommended</th>
<th>75% Power</th>
<th>210 HP</th>
<th>65% Power</th>
<th>182 HP</th>
<th>55% Power</th>
<th>154 HP</th>
<th>45% Power</th>
<th>126 HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Altitude (Feet)</td>
<td>RPM</td>
<td>Fuel Flow</td>
<td>Std. Day</td>
<td>Std. Temp.</td>
<td>MANIFOLD PRESSURE - INCHES OF MERCURY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>11°C 52°F</td>
<td>27.0</td>
<td>26.2</td>
<td>25.3</td>
<td>24.3</td>
<td>23.0</td>
<td>22.4</td>
<td>21.4</td>
<td>20.3</td>
<td>19.5</td>
<td>18.6</td>
<td>17.7</td>
</tr>
<tr>
<td>4,000</td>
<td>5°C 45°F</td>
<td>27.0</td>
<td>25.7</td>
<td>24.8</td>
<td>23.8</td>
<td>22.6</td>
<td>22.0</td>
<td>21.1</td>
<td>20.0</td>
<td>19.1</td>
<td>18.2</td>
<td>17.3</td>
</tr>
<tr>
<td>6,000</td>
<td>3°C 38°F</td>
<td>24.7</td>
<td>23.6</td>
<td>22.8</td>
<td>22.0</td>
<td>21.2</td>
<td>20.3</td>
<td>19.2</td>
<td>18.2</td>
<td>17.2</td>
<td>16.3</td>
<td>15.3</td>
</tr>
<tr>
<td>8,000</td>
<td>-1°C 31°F</td>
<td>22.5</td>
<td>21.7</td>
<td>20.7</td>
<td>19.8</td>
<td>18.7</td>
<td>17.7</td>
<td>16.8</td>
<td>16.0</td>
<td>14.9</td>
<td>14.2</td>
<td>13.7</td>
</tr>
<tr>
<td>10,000</td>
<td>-5°C 23°F</td>
<td>20.2</td>
<td>19.3</td>
<td>18.2</td>
<td>17.2</td>
<td>16.4</td>
<td>15.8</td>
<td>14.6</td>
<td>13.9</td>
<td>13.4</td>
<td>12.8</td>
<td>12.3</td>
</tr>
<tr>
<td>12,000</td>
<td>-9°C 16°F</td>
<td>19.5</td>
<td>18.7</td>
<td>17.9</td>
<td>16.7</td>
<td>16.0</td>
<td>15.6</td>
<td>14.3</td>
<td>13.6</td>
<td>13.1</td>
<td>12.6</td>
<td>12.1</td>
</tr>
<tr>
<td>14,000</td>
<td>-13°C 9°F</td>
<td>18.1</td>
<td>17.7</td>
<td>16.3</td>
<td>15.8</td>
<td>15.4</td>
<td>14.0</td>
<td>13.3</td>
<td>12.9</td>
<td>12.5</td>
<td>12.1</td>
<td>11.7</td>
</tr>
<tr>
<td>16,000</td>
<td>-17°C 2°F</td>
<td>16.1</td>
<td>15.6</td>
<td>15.2</td>
<td>14.3</td>
<td>13.7</td>
<td>13.0</td>
<td>12.7</td>
<td>12.4</td>
<td>12.0</td>
<td>11.6</td>
<td>11.2</td>
</tr>
<tr>
<td>18,000</td>
<td>-21°C -5°F</td>
<td>15.0</td>
<td>13.5</td>
<td>12.8</td>
<td>12.5</td>
<td>11.8</td>
<td>11.5</td>
<td>11.2</td>
<td>10.9</td>
<td>10.6</td>
<td>10.2</td>
<td>9.9</td>
</tr>
<tr>
<td>20,000</td>
<td>-25°C -12°F</td>
<td>13.3</td>
<td>12.6</td>
<td>12.3</td>
<td>11.9</td>
<td>11.6</td>
<td>11.3</td>
<td>11.0</td>
<td>10.7</td>
<td>10.4</td>
<td>10.1</td>
<td>9.8</td>
</tr>
</tbody>
</table>

NOTE: Add .4” MP for each 10°C (18°F) OAT above standard day temperature. Subtract .4” MP for each 10°C (18°F) below standard day temperature. If OAT above standard precludes obtaining the desired MP, use the next higher RPM/MP with appropriate temperature correction to MP.
RANGE

Clean Configuration, 850 Gallons (337 Liters) (74 Imp. Gal.) Usable Fuel
Zero Wind. Range includes Warmup, Taxi, Takeoff.
Max Power. Climb Descent; Plus 45 Minutes Reserve at Cruise Power.

EXAMPLE: PRESS ALT 10000 FT
POWER 65% PWR/2400 RPM/BEST POWER
RANGE 970 NM (1795 KM)

IT IS RECOMMENDED THAT OPERATOR CALCULATE RANGE FOR ACTUAL CONDITIONS.

CAUTION

2400 RPM - 75% THRU 45% POWER SETTING. BEST POWER = 65% POWER SETTING.
Clean Configuration, 89.0 Gallons (337 Liters) (74 Imp. Gal.) Usable Fuel
Zero Wind - Endurance: Includes Warmup, Taxi, Takeoff,
Max Per. Climb, Descent, Plus 45 Minutes Reserve at Cruise Power

CAUTION
Operator should compute
endurance based on
actual conditions.

ENDURANCE
(Standard Day)
3200 LBS (1452 KGS)

2400 RPM - 75% thru 45% POWER SETTINGS
2500 RPM - 85% POWER SETTING
BEST POWER =
BEST ECONOMY =-----------------------

EXAMPLE:
PRESS ALT 11000 FT
POWER 65%
(2400 RPM/BEST POWER)
ENDURANCE 5.65 HOURS

Seq.
2 4 6 8 10 12 14 16 18 20
Level
PRESSURE ALTITUDE - (FEETx1000)

ENDURANCE - HOURS
TIME-FUEL-DISTANCE TO DESCEND

150 KIAS DESCENT SPEED

ASSOCIATED CONDITIONS:
POWER: 2000 RPM/MAP AS REQ'D TO MAINTAIN
750 FPM RATE OF DESCENT
LANDING GEAR: UP
FLAPS: UP
MIXTURE: LEAN TO BLUE ARC or ENRICHEN FOR SMOOTHNESS

EXAMPLE:
INITIAL PRESSURE ALT: 18000
FINAL PRESSURE ALT: 4000

TIME TO DESCEND: 24.0-5.0=19 MINUTES
FUEL TO DESCEND: 3.6-0.7=2.9 GALLONS
DISTANCE TO DESCEND: 69.0-13.0=56.0 NAUTICAL MILES
MOONEY SECTION V
M20R
PERFORMANCE
LANDING DISTANCE - GRASS SURFACE

<table>
<thead>
<tr>
<th>LANDING WEIGHT - LBS (KGS)</th>
<th>APPROACH SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200 (1450)</td>
<td>75 KIAS</td>
</tr>
<tr>
<td>2900 (1365)</td>
<td>71 KIAS</td>
</tr>
<tr>
<td>2600 (1175)</td>
<td>68 KIAS</td>
</tr>
</tbody>
</table>

ASSOCIATED CONDITIONS:
- POWER: IDLE
- LANDING GEAR: DOWN
- WING FLAPS: FULL DOWN (33°)
- RUNWAY SURFACE: SHORT DRY GRASS, LEVEL
- BRAKING: MAXIMUM

EXAMPLE:
- DAT: 0 °C
- PRESSURE: 6000 FT.
- ALTITUDE: 6000 FT.
- WEIGHT: 2000 LBS (907 KGS)
- HEADWIND COMPONENT: 5 KTS

GROUND ROLL: 1650 FT. (503 M)
TOTAL LANDING DISTANCE: 3100 FT. (945 M)

NOTE: 1) MAXIMUM DEMONSTRATED CROSSWIND IS 13 KNOTS.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>. 6-2</td>
</tr>
<tr>
<td>AIRPLANE WEIGHING PROCEDURE</td>
<td>. 6-2</td>
</tr>
<tr>
<td>WEIGHT & BALANCE CHART</td>
<td>. 6-4</td>
</tr>
<tr>
<td>OWNERS WEIGHT & BALANCE RECORD</td>
<td>. 6-5</td>
</tr>
<tr>
<td>PILOTS LOADING GUIDE</td>
<td>. 6-6</td>
</tr>
<tr>
<td>PROBLEM FORM</td>
<td>. 6-7</td>
</tr>
<tr>
<td>LOADING COMPUTATION GRAPH</td>
<td>. 6-7</td>
</tr>
<tr>
<td>CENTER OF GRAVITY MOMENT ENVELOPE</td>
<td>. 6-8</td>
</tr>
<tr>
<td>CENTER OF GRAVITY LIMITS</td>
<td>. 6-9</td>
</tr>
<tr>
<td>FIXED BALLAST</td>
<td>.6-10</td>
</tr>
<tr>
<td>EQUIPMENT LIST</td>
<td>.6-10</td>
</tr>
</tbody>
</table>

NOTE:

The empty weight, center of gravity, and equipment list for the airplane as delivered from Mooney Aircraft Corporation is contained in this section. The use of this section is valid for use with the airplane identified below when approved by Mooney Aircraft Corporation.

MOONEY - M20R

AIRCRAFT SERIAL NO.__

AIRCRAFT REGISTRATION NO.____________________________________

Mooney Aircraft Corporation - Approval Signature & Date
SECTION VI
WEIGHT AND BALANCE

INTRODUCTION

This section describes the procedure for calculating loaded aircraft weight and moment for various flight operations. In addition, procedures are provided for calculating the empty weight and moment of the aircraft when the removal or addition of equipment results in changes to the empty weight and center of gravity. A comprehensive list of all Mooney equipment available for this airplane is included in this section. Only those items checked (X) were installed at Mooney and are included in the empty weight-and-balance data.

The aircraft owner and/or pilot, has the responsibility of properly loading the aircraft for safe flight. Data presented in this section will enable you to carry out this responsibility and insure that your airplane is loaded to operate within the prescribed weight and center-of-gravity limitations.

At the time of delivery, Mooney Aircraft Corporation provides the empty weight and center of gravity data for the computation of individual loadings. (The empty weight and C.G. (gear extended) as delivered from the factory is tabulated on page 6-5 when this manual is supplied with the aircraft from the factory.)

FAA regulations also require that any change in the original equipment affecting the empty weight and center of gravity be recorded in the Aircraft Log Book. A convenient form for maintaining a permanent record of all such changes is provided on page 6-5. This form, if properly maintained, will enable you to determine the current weight-and-balance status of the airplane for load scheduling. The weight-and-balance data entered as your aircraft left the factory, plus the record you maintain on page 6-5, is all of the data needed to compute loading schedules.

The maximum certificated gross weight for the TCM powered M20R is 3368 lbs (1528 Kg) for Takeoff and 3200 pounds (1452 Kgs) for Landing. Maximum useful load is determined by subtracting the corrected aircraft empty weight from its maximum gross weight. The aircraft must be operated strictly within the limits of the Center-of-Gravity Moment Envelope shown on page 6-8.

AIRPLANE WEIGHING PROCEDURE

(A) LEVELING: Place a spirit level on the leveling screws above the tailcone left access door when leveling the aircraft longitudinally. Level the aircraft by increasing or decreasing air pressure in the nose wheel tire.

(B) WEIGHING: To weigh the aircraft, select a level work area and:
1. Check for installation of all equipment as listed in the Weight & Balance Record Equipment List.
2. Top off both wing tanks with full fuel. Subtract usable fuel, 89.0 U.S. gals. (337 liters) @ 5.82 lb/gal (100LL) (.69 Kg/l) = 518 lbs. (235 Kgs.), from total weight as weighed.

OPTIONAL METHOD - Ground aircraft and defuel tanks as follows:
 a. Disconnect fuel line at fuel system union located forward of the firewall on the lower left hand side.
 b. Connect a flexible line to output fitting that will reach fuel receptacle.
 c. Turn fuel selector valve to tank to be drained; remove filler cap from fuel filler port.
 d. Turn on fuel boost pump until tank is empty.
 REPEAT STEPS C. AND D. TO DRAIN OTHER TANK.
 e. Replace 3.0 gallons (11.4 liters) fuel into each tank (unusable fuel).
 (Use 5.82lb/gal(.69 Kg/liter) for 100LL fuel).
 f. Replace filler caps.

6 - 2

ISSUED 6 - 94
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (POUNDS)</th>
<th>ARM (cm)</th>
<th>INCHES</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FIXED BALLAST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>WEIGHT (-501 INSTL)</td>
<td>350203</td>
<td>(2.81)</td>
<td>6.2</td>
<td>(532.1)</td>
<td>209.50</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>WEIGHT (-503 INSTL)</td>
<td>350203</td>
<td>(6.08)</td>
<td>13.4</td>
<td>(532.1)</td>
<td>209.50</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>WEIGHT (-505 INSTL)</td>
<td>350203</td>
<td>(8.94)</td>
<td>19.7</td>
<td>(532.1)</td>
<td>209.50</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>ITEM DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (Kg)</td>
<td>ARM (Cm)</td>
<td>MARK IF INSTL.D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>POWERPLANT & ACCESSORIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>ENGINE-TCM 10550-G(※) INCLUDES: STARTER, ALT'NR, VAC. PUMP, EXH., INDUCT. SYST., ALT. AIR, ENG. MT., FULL OIL, PROP.GOV.</td>
<td>600270</td>
<td>(249.3)</td>
<td>549.5</td>
<td>(159.16)</td>
<td>-23.29</td>
<td>X</td>
</tr>
<tr>
<td>2B</td>
<td>PROPELLER - CONSTANT SPEED: McCauley - Hub- 3A32C418 BLADES (※) -82NRC-9 W/ SPINNER</td>
<td>680030</td>
<td>(34.7)</td>
<td>76.6</td>
<td>(-125.7)</td>
<td>-49.5</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Refer to Section I & II for engine/propeller configuration.
Equipment List

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (POUNDS)</th>
<th>ARM (cm)</th>
<th>ARM (INCHES)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. POWERPLANT & ACCESSORIES (cont.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table is blank and needs to be filled in with specific equipment details.
WEIGHING (con't.)

3. Fill oil tank to capacity (8 qts.).
4. Position front seats in full forward position.
5. Position flaps in full up position.
6. Position a 2000-pound (907.2 Kg.) capacity scale under each of the three wheels.
7. Level aircraft as previously described making certain nose wheel is centered.
8. Weigh the aircraft and deduct any tare from each reading.
9. Find reference point by dropping a plumb bob from center of nose gear trunion (retracting pivot axis) to the floor. Mark the point of intersection.
10. Locate center line of nose wheel axle and main wheel axles in the same manner.
11. Measure the horizontal distance from the reference point to main wheel axle center line. Measure horizontal distance from center line of nose wheel axle to center line of main wheel axles.
12. Record weights and measurements, and compute basic weight and CG as follows on next page:

NOTE:
Wing Jack Points are located at Fus. Sta. 56.658 in. (143.91 cm). Nose Jack Point is located at Fus. Sta. -5.51 in. (-14.0 cm.). Refer to SECTION VIII, Jacking, for procedures.
Section VI

Weight and Balance

Mooney M20R

Weight and Balance Chart

<table>
<thead>
<tr>
<th>Scale Position and Symbol</th>
<th>Scale Reading</th>
<th>Tare</th>
<th>Net Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose Wheel (W_N)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Main Wheel (W_R)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Main Wheel (W_L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Empty Weight (W_T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As Weighed (W_T)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. CG Forward of Main Wheels:

\[
\text{Lbs/Kg} \times \text{In/cm/mm} = \text{Lbs/Kg} = \text{In/cm/mm}
\]

\(W_N\) : Distance Between Main and Nose Wheel Axle Centers

b. CG Aft of Datum (Station 0):

\[
\text{In/cm/mm} - 13 \text{ in/33.0 cm/330 mm} = \text{In/cm/mm}
\]

\(L_N\) : Distance From Center of Main Wheel Axles (Horizontal) to Gear Trunion to Datum (Empty Weight CG) (\(L_{CG}\))

Measurements

<table>
<thead>
<tr>
<th>(L_M/R)</th>
<th>INCHES/CM/MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_M/N)</td>
<td>INCHES/CM/MM</td>
</tr>
</tbody>
</table>

If fuel has not been d removable, the usable fuel must be subtracted to determine the Basic Empty Wt., and CG. Use loading calculation procedure shown on page 6-6.

<table>
<thead>
<tr>
<th>Weight</th>
<th>LBS. (Kg)</th>
<th>CG. IN/cm/mm</th>
<th>Moment (Lb-in(Kg-cm)(Kg-mm)/1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Weighed (W_T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Fuel</td>
<td></td>
<td>49.23 in/125 cm/1250 mm</td>
<td></td>
</tr>
<tr>
<td>Basic Empty Wt.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6-4

Issued 6-94
MOONEY
M20R
SECTION VI
WEIGHT AND BALANCE

PROBLEM FORM

<table>
<thead>
<tr>
<th>STEP</th>
<th>ITEM</th>
<th>SAMPLE PROBLEM</th>
<th>YOUR PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WEIGHT (Kg)</td>
<td>MOMENT (kg-cm)/1000</td>
</tr>
<tr>
<td>1</td>
<td>A/C Basic Empty Mt. Wt. (from page 6-5)</td>
<td>2.309</td>
<td>29.46</td>
</tr>
<tr>
<td></td>
<td>(Includes Full OI & Gls. (27.25 L) @ 1.875 lbs. (80 Kg/Lt) (Sta. -20.19D-51.3 cm) (OIL pump assumed FULL for all lights))</td>
<td>2.309</td>
<td>29.46</td>
</tr>
<tr>
<td>2</td>
<td>Pilot Seat (#1)</td>
<td>(77.1)</td>
<td>170 (7.64)</td>
</tr>
<tr>
<td></td>
<td>Co-Pilot Seat (#2)</td>
<td>(77.1)</td>
<td>170 (7.25)</td>
</tr>
<tr>
<td></td>
<td>Left Rear Seat (#3) or Cargo Area</td>
<td>(77.1)</td>
<td>170 (14.3)</td>
</tr>
<tr>
<td></td>
<td>Right Rear Seat (#4) or Cargo Area</td>
<td>(77.1)</td>
<td>170 (14.3)</td>
</tr>
<tr>
<td></td>
<td>Fuel (Max. Usable - 89.0 Gal/534 Lbs)</td>
<td>164.7</td>
<td>363 (20.59)</td>
</tr>
<tr>
<td></td>
<td>(337 L/2426Kgs) @ Sta 49.23 (25 cm)</td>
<td>164.7</td>
<td>363 (20.59)</td>
</tr>
<tr>
<td>5</td>
<td>Baggage (Max. 120 Lbs/54.4 cm) @ Sta. 101.5</td>
<td>(45.4)</td>
<td>100 (11.70)</td>
</tr>
<tr>
<td></td>
<td>(257.8 cm)</td>
<td>100 (11.70)</td>
<td>100.48</td>
</tr>
<tr>
<td></td>
<td>Hot Reck (Max. 10 Lbs/4.54 Kg) @ Sta. 126.6</td>
<td>100.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(320 cm)</td>
<td>100.48</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Loaded A/C Weight (Takeoff at Max. Weight)</td>
<td>1528</td>
<td>3368 (190.2)</td>
</tr>
<tr>
<td></td>
<td>A/C will have to burn off 168 lbs. fuel</td>
<td>1528</td>
<td>3368 (190.2)</td>
</tr>
<tr>
<td></td>
<td>before normal landing is accomplished.</td>
<td>1528</td>
<td>3368 (190.2)</td>
</tr>
<tr>
<td>7</td>
<td>Required Fuel Burn - On 28 Gals (105.9 L) @ 8 Lbs./Gal.</td>
<td>76.2</td>
<td>166 (-9.53)</td>
</tr>
<tr>
<td></td>
<td>76.2</td>
<td>166 (-9.53)</td>
<td>100.48</td>
</tr>
<tr>
<td>8</td>
<td>Maximum Landing Weight of A/C</td>
<td>1452</td>
<td>3200 (150.6)</td>
</tr>
<tr>
<td></td>
<td>1452</td>
<td>3200 (150.6)</td>
<td>100.48</td>
</tr>
</tbody>
</table>

9. Refer to Center of Gravity Moment Envelope to determine whether your A/C loading is acceptable. CAUTION - DO NOT LAND A/C WHEN OVER 3200 LBS EXCEPT IN AN EMERGENCY SITUATION.

* Obtain the moment/1000 value for each seat position (FWD, MID or AFT) from loading computation graph.

CAUTION
Pilot is responsible for cargo loaded in rear seat area, with seat backs folded down. Cargo Center of Gravity location varies with total weight loaded. Compute CG value when cargo is loaded.

LOAD MOMENT/1000 - Kg-cm (mm)

50000 100000 150000 200000 250000 300000 350000

(Lb) KG

10000 20000 30000 40000 50000

ITEM WEIGHT

LOADING COMPUTATION GRAPH

ISSUED 6-94
REV. F 9-96
8-7
LOADING CALCULATION PROCEDURE

Proper loading of the aircraft is essential for maximum flight performance and safety. This section will assist you in determining whether the aircraft loading schedule is within the approved weight and center-of-gravity limits.

To figure an actual loading problem for your aircraft, proceed as follows:

Step 1. Refer to the latest entry on page 6-5 for the current empty weight and moment.

NOTE

Since the engine oil is normally kept at the full level, the oil weight and moment is included in basic empty weight and is constant in calculating all loading problems.

Step 2: Note the pilot's weight and the position his seat will occupy in flight. Find this weight on the left scale of the Loading Computation Graph (page 6-6) and cross the graph horizontally to the graph for #1 and #2 seats. When this point is located, drop down to the bottom scale to find the value of the moment/1000 due to the pilot's weight and seat position.

Repeat procedure for co-pilot and enter these weights and moment/1000 values in the proper sub-columns in the Problem Form on page 6-7.

Step 3: Proceed as in Step 2 to account for the passengers in seats 3 and 4. Enter the weight and value of moment/1000 in the proper columns.

Step 4: Again proceed as in Step 2 to account for the amount of fuel carried, and enter the weight and moment/1000 values in the proper columns.

Step 5: Once more proceed as in Step 2 to account for the baggage to be carried and enter the figures in the proper columns.

Step 6: Total the weight columns. This total must be 3368 Pounds (1528 Kg) or less. Total the Moment/1000 column.

DO NOT FORGET TO SUBTRACT NEGATIVE NUMBERS.

Step 7: Refer to the Center-of-Gravity Moment Envelope (page 6-8). Locate the loaded weight of your airplane on the left scale of the graph and trace a line horizontally to the right. Locate the total moment/1000 value for your airplane on the bottom scale of the graph and trace a line vertically above this point until the horizontal line for weight is intersected. If the point of intersection is within the shaded area, your aircraft loading is acceptable. If the point of intersection falls outside the shaded area, you must rearrange the load before takeoff.
CENTER of GRAVITY MOMENT ENVELOPE

A/C WEIGHT (Kg) Lbs.

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

LOAD AIRCRAFT MOMENT/1000 - Kg-MM

(1528) 3368
(1500) 3300
(1452) 3200
(1400) 3100
(1300)
(1200)
(1100)
(1000) 2200
(907) 2000

LOAD AIRCRAFT MOMENT/1000 - POUND-INCHES

145.2
154.9
171.7

A/C LOADED WITHIN THIS AREA ARE ABOVE NORMAL APPROVED LANDING WEIGHT. FUEL MUST BE BURNT OFF PRIOR TO NORMAL LANDING.
M20R - CENTER OF GRAVITY LIMITS ENVELOPE

A/C WEIGHT (kg) Lbs.

AIRCRAFT CG LOCATION (L_{CG}) INCHES AFT OF DATUM (STA 0.0)

LOADED AIRCRAFT WEIGHT

2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3368
1100
1120
1200
1220
1240
1260
1280
1300
1320
1340
1360
1380
1400
1420
1440
1460
1480
1500
1528

FORWARD LIMIT

AFT LIMIT

3300

ISSUED 6-94
The MZOR has provisions for a fixed ballast located in the tailcone at Fuselage Station 209.5. Some aircraft with EFIS, TKS & other systems, may require all or a portion of the fixed ballast to be removed in order to stay within the weight and balance center of gravity envelope.

EQUIPMENT LIST

The following equipment list is a listing of items approved at the time of publication of this manual for the Mooney M20R.

Only those items having an X in the "Mark If Installed" column and dated were installed at Mooney Aircraft Corporation at the time of manufacture.

If additional equipment is to be installed it must be done in accordance with the reference drawing or a separate FAA approval.

NOTE

Positive arms are distances aft of the airplane datum. Negative arms are distances forward of the airplane datum.

Asterisks (*) after the item weight and arm indicate complete assembly installations. Some major components of the assembly are listed and indented on the lines following. The summation of the major components will not necessarily equal the complete assembly installation.
Additional Equipment List / Revised Weight and Balance

WEIGHT/ARM/MOMENT

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>TYPE</th>
<th>SERIAL No.</th>
<th>WEIGHT</th>
<th>ARM</th>
<th>MOMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LBS.</td>
<td>INCH</td>
<td>LBS./INCH</td>
</tr>
<tr>
<td>REMOVED ITEMS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com/Nav</td>
<td>KX165</td>
<td>55179</td>
<td>-5.70</td>
<td>14.40</td>
<td>-82.08</td>
</tr>
<tr>
<td>GPS</td>
<td>KLN90B</td>
<td>20518</td>
<td>-6.30</td>
<td>14.40</td>
<td>-90.72</td>
</tr>
<tr>
<td>Transponder</td>
<td>KT78A</td>
<td>133066</td>
<td>-3.10</td>
<td>14.40</td>
<td>-44.64</td>
</tr>
<tr>
<td>GPS Ann.</td>
<td>810435-501</td>
<td>0006</td>
<td>-1.10</td>
<td>16.50</td>
<td>-18.15</td>
</tr>
<tr>
<td>GPS Ant.</td>
<td>KA92</td>
<td>01727</td>
<td>-0.60</td>
<td>117.96</td>
<td>-70.76</td>
</tr>
<tr>
<td>TXP. Ant.</td>
<td>CI105</td>
<td>N/A</td>
<td>-0.40</td>
<td>41.50</td>
<td>-16.60</td>
</tr>
<tr>
<td>Encoder</td>
<td>AT3000</td>
<td>0016195</td>
<td>-0.50</td>
<td>4.00</td>
<td>-2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALLED ITEMS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com/Nav/GPS</td>
<td>GTN750</td>
<td>1ZA010052</td>
<td>7.90</td>
<td>14.40</td>
<td>112.32</td>
</tr>
<tr>
<td>Transponder</td>
<td>GTX33</td>
<td>89121556</td>
<td>3.60</td>
<td>128.00</td>
<td>460.80</td>
</tr>
<tr>
<td>GPS Ant.</td>
<td>GA35</td>
<td>80693</td>
<td>0.90</td>
<td>117.96</td>
<td>70.76</td>
</tr>
<tr>
<td>TXP. Ant.</td>
<td>CI105-16</td>
<td>25947</td>
<td>0.40</td>
<td>170.00</td>
<td>68.00</td>
</tr>
<tr>
<td>Encoder</td>
<td>SSD120</td>
<td>13035</td>
<td>0.30</td>
<td>18.00</td>
<td>5.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEW AIRCRAFT EMPTY</td>
<td></td>
<td></td>
<td>2312,00</td>
<td>43.62</td>
<td>100857.33</td>
</tr>
</tbody>
</table>

NEW AIRCRAFT EMPTY WEIGHT 2312,00 LBS.
NEW AIRCRAFT CENTER OF GRAVITY 43.62 INCH

PS. ARM. Has only to decimals.
EQUIPMENT LIST

M-EQ-C1

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (POUNDS)</th>
<th>ARM (cm)</th>
<th>ARM (INCHES)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. ELECTRICAL SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>BATTERIES 24 VOLTS (2)</td>
<td>800311</td>
<td>(13.4)</td>
<td>29.55</td>
<td>(370.8)</td>
<td>146.0</td>
<td>X</td>
</tr>
<tr>
<td>2C</td>
<td>REGULATOR, VOLTAGE (2)</td>
<td>800311</td>
<td>(.27)</td>
<td>.6 EA</td>
<td>(41.28)</td>
<td>16.25</td>
<td>X</td>
</tr>
<tr>
<td>3C</td>
<td>PITOT, HEATED</td>
<td>820252</td>
<td>(.52)</td>
<td>1.15</td>
<td>(106.3)</td>
<td>41.85</td>
<td>X</td>
</tr>
<tr>
<td>4C</td>
<td>CIGAR LIGHTER</td>
<td>800311</td>
<td>(.08)</td>
<td>.17</td>
<td>(4.93)</td>
<td>19.5</td>
<td>X</td>
</tr>
<tr>
<td>5C</td>
<td>FUEL PUMP, ELECTRIC</td>
<td>610293</td>
<td>(.86)</td>
<td>1.9</td>
<td>(38.1)</td>
<td>15.0</td>
<td>X</td>
</tr>
<tr>
<td>6C</td>
<td>STALL WARNING INDICATOR</td>
<td>800311</td>
<td>(.45)</td>
<td>1.0</td>
<td>(127.0)</td>
<td>50.0</td>
<td>X</td>
</tr>
<tr>
<td>7C</td>
<td>GEAR WARNING INDICATOR</td>
<td>800311</td>
<td>(.45)</td>
<td>1.0</td>
<td>(49.53)</td>
<td>19.5</td>
<td>X</td>
</tr>
<tr>
<td>8C</td>
<td>WING TIP STROBE LIGHT INSTL.</td>
<td>800311</td>
<td>(2.27)</td>
<td>5.0</td>
<td>(134.62)</td>
<td>53.0</td>
<td>X</td>
</tr>
<tr>
<td>9C</td>
<td>TAIL STROBE LIGHT INSTL.</td>
<td>800311</td>
<td>(.68)</td>
<td>1.5</td>
<td>(27.87)</td>
<td>10.92</td>
<td>X</td>
</tr>
<tr>
<td>10C</td>
<td>LANDING/TAXI LIGHTS (2 SETS)</td>
<td>210417</td>
<td>(2.7)</td>
<td>5.88</td>
<td>(105.6)</td>
<td>41.6</td>
<td>X</td>
</tr>
<tr>
<td>11C</td>
<td>ACTUATOR, FLAPS</td>
<td>750110</td>
<td>(2.3)</td>
<td>5.1</td>
<td>(27.71)</td>
<td>109.1</td>
<td>X</td>
</tr>
<tr>
<td>12C</td>
<td>ACTUATOR, LANDING GEAR</td>
<td>560260</td>
<td>(5.08)</td>
<td>11.2</td>
<td>(99.06)</td>
<td>39.0</td>
<td>X</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (LBS)</td>
<td>ARM (INCHES)</td>
<td>MARK IF INSTALLED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13C</td>
<td>C. ELECTRICAL SYSTEM</td>
<td>810152</td>
<td>3.59 (1.63)</td>
<td>133.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14C</td>
<td></td>
<td>810150</td>
<td>4.98 (2.26)</td>
<td>172.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15C</td>
<td>E.L.T. CARTESIEN</td>
<td>810150</td>
<td>6.5 (2.95)</td>
<td>160.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16C</td>
<td>E.L.T. CARTESIEN</td>
<td>810436</td>
<td>3.1 (1.41)</td>
<td>168.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17C</td>
<td>E.L.T. CARTESIEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18C</td>
<td>E.L.T. CARTESIEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equipment List

Item Description

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>Ref. Drawing</th>
<th>Weight (Kg)</th>
<th>Weight (Pounds)</th>
<th>Arm (cm)</th>
<th>Arm (Inches)</th>
<th>Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>Main Wheel & Brake Assys (2)</td>
<td>520029</td>
<td>(6.22)*</td>
<td>13.72</td>
<td>(163.57)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wheel Assembly (2)</td>
<td>520029</td>
<td>(4.99)</td>
<td>11.0</td>
<td>(162.51)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brake Assembly (2)</td>
<td>520029</td>
<td>(3.81)</td>
<td>1.8</td>
<td>(153.74)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>Tires, Main (2) (6 Ply Rating) 6.00 x 6 Type III W/ Tubes</td>
<td>520029</td>
<td>(7.71)</td>
<td>17.0</td>
<td>(162.51)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Nose Wheel Assembly (1)</td>
<td>540000</td>
<td>(1.18)</td>
<td>2.6</td>
<td>(-33.8)</td>
<td>-13.3</td>
<td>X</td>
</tr>
<tr>
<td>4D</td>
<td>Tire, Nose (1) (6 Ply Rating) 5.00 x 5 Type III W/ Tube</td>
<td>540000</td>
<td>(3.18)</td>
<td>7.0</td>
<td>(-33.8)</td>
<td>-13.3</td>
<td>X</td>
</tr>
<tr>
<td>5D</td>
<td>Master Cylinder, Brake (2)</td>
<td>850109</td>
<td>(1.36)</td>
<td>3.0</td>
<td>(21.08)</td>
<td>8.3</td>
<td>X</td>
</tr>
<tr>
<td>6D</td>
<td>Valve, Parking Brake</td>
<td>850109</td>
<td>(.27)</td>
<td>.6</td>
<td>(-3.68)</td>
<td>-1.45</td>
<td>X</td>
</tr>
<tr>
<td>7D</td>
<td>Dual Puck Brake Assembly (2)</td>
<td>520029</td>
<td>(1.35)</td>
<td>2.98</td>
<td>(168.48)</td>
<td>66.53</td>
<td>X</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>ITEM DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (KG)</td>
<td>WEIGHT (POUNDS)</td>
<td>ARM (CM)</td>
<td>ARM (INCHES)</td>
<td>MARK IF INSTALLED</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>1E</td>
<td>GYRO HORIZON</td>
<td>820336</td>
<td>(1.33)</td>
<td>(2.93)</td>
<td>(44.3)</td>
<td>17.46</td>
<td></td>
</tr>
<tr>
<td>2E</td>
<td>DIRECTIONAL GYRO</td>
<td></td>
<td>(1.33)</td>
<td>(2.93)</td>
<td>(42.7)</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>CLOCK, PANEL MOUNTED</td>
<td></td>
<td></td>
<td>.25</td>
<td>(43.78)</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>4E</td>
<td>DAT GAUGE</td>
<td></td>
<td></td>
<td>.55</td>
<td>(46.99)</td>
<td>18.5</td>
<td>X</td>
</tr>
<tr>
<td>5E</td>
<td>INDICATOR, VERTICAL SPEED</td>
<td></td>
<td></td>
<td>.5</td>
<td>(44.9)</td>
<td>17.67</td>
<td>X</td>
</tr>
<tr>
<td>6E</td>
<td>INDICATOR, TURN & SLIP/TURN COORD</td>
<td></td>
<td>(0.83)</td>
<td>1.84</td>
<td>(41.91)</td>
<td>16.5</td>
<td>X</td>
</tr>
<tr>
<td>7E</td>
<td>ALTIMETER</td>
<td></td>
<td></td>
<td>.49</td>
<td>(36.0)</td>
<td>14.17</td>
<td></td>
</tr>
<tr>
<td>8E</td>
<td>INDICATOR, AIRSPEED</td>
<td></td>
<td></td>
<td>.32</td>
<td>(47.75)</td>
<td>18.8</td>
<td>X</td>
</tr>
<tr>
<td>9E</td>
<td>TACHOMETER</td>
<td></td>
<td></td>
<td>.36</td>
<td>(48.13)</td>
<td>18.95</td>
<td>X</td>
</tr>
<tr>
<td>10E</td>
<td>FUEL FLOW</td>
<td></td>
<td></td>
<td>.63</td>
<td>(46.99)</td>
<td>18.48</td>
<td>X</td>
</tr>
<tr>
<td>11E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12E</td>
<td>ENGINE GAUGES (DUAL CLUSTERS)</td>
<td>820336</td>
<td>(1.6)</td>
<td>3.5</td>
<td>(46.99)</td>
<td>18.5</td>
<td>X</td>
</tr>
</tbody>
</table>
Equipment List

Item No.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item Description</th>
<th>Ref. Drawing</th>
<th>Weight (Kg/Pounds)</th>
<th>Arm (cm/Inches)</th>
<th>Mark If Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>13E</td>
<td>Annunciator Panel</td>
<td>820336</td>
<td>0.58/1.3</td>
<td>44.45/17.5</td>
<td>X</td>
</tr>
<tr>
<td>14E</td>
<td>Magnetic Compass</td>
<td>130323</td>
<td>0.23/0.5</td>
<td>60.6/23.87</td>
<td>X</td>
</tr>
<tr>
<td>15E</td>
<td>Manifold Pressure</td>
<td>820336</td>
<td>0.45/1.0</td>
<td>46.94/18.48</td>
<td>X</td>
</tr>
<tr>
<td>16E</td>
<td>Alternate Static Air Source</td>
<td>820336</td>
<td>0.14/0.31</td>
<td>44.69/18.5</td>
<td>X</td>
</tr>
<tr>
<td>17E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E. Instruments (Con't)

Issued 6-94

Section VI

Weight and Balance

Mo. Day Year

M-EQ-E2
EQUIPMENT LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (POUNDS)</th>
<th>ARM (cm)</th>
<th>ARM (INCHES)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F</td>
<td>VACUUM SYSTEM INSTALLATION</td>
<td>860015</td>
<td>(2.58)</td>
<td>5.68</td>
<td>(-2.54)</td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>2F</td>
<td>VACUUM PUMP</td>
<td>860015</td>
<td>(1.54)</td>
<td>3.4</td>
<td>(-7.6)</td>
<td>-3.0</td>
<td>X</td>
</tr>
<tr>
<td>3F</td>
<td>STAND-BY VACUUM PUMP (CLUTCH)</td>
<td>860015</td>
<td>(2.45)</td>
<td>5.41</td>
<td>(-6.4)</td>
<td>-2.5</td>
<td></td>
</tr>
<tr>
<td>4F</td>
<td>STAND-BY VACUUM PUMP (TAILCONIC)</td>
<td>860063</td>
<td>(5.44)</td>
<td>12.0</td>
<td>(280.42)</td>
<td>110.4</td>
<td></td>
</tr>
<tr>
<td>5F</td>
<td>OXYGEN SYSTEM (115.7 cu. ft.)</td>
<td>870029</td>
<td>(20.2)</td>
<td>44.55</td>
<td>(347.9)</td>
<td>137.0</td>
<td></td>
</tr>
<tr>
<td>6F</td>
<td>DESCENT RATE CONTROL (VACUUM)</td>
<td>950155</td>
<td>(5.59)</td>
<td>12.32</td>
<td>(177.8)</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>7F</td>
<td>DESCENT RATE CONTROL (ELECTRIC)</td>
<td>950271</td>
<td>(5.8)</td>
<td>12.8</td>
<td>(177.8)</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>8F</td>
<td>PROPELLER DE-ICE (ELECTRIC)</td>
<td>690003</td>
<td>(2.69)</td>
<td>5.93</td>
<td>(-115.6)</td>
<td>-45.5</td>
<td></td>
</tr>
<tr>
<td>9F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>ITEM DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (KG)</td>
<td>WEIGHT (POUNDS)</td>
<td>ARM (CM)</td>
<td>ARM (INCHES)</td>
<td>MARK IF INSTALLED</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1G</td>
<td>SUN VISORS (2)</td>
<td>130303</td>
<td>(.32)</td>
<td>1.0</td>
<td>(1.26)</td>
<td>(49.2)</td>
<td>X</td>
</tr>
<tr>
<td>2G</td>
<td>RESTRAINT ASSY, REAR (2)</td>
<td>140318</td>
<td>(2.27)</td>
<td>5.0</td>
<td>(8.93)</td>
<td>(34.8)</td>
<td>X</td>
</tr>
<tr>
<td>3G</td>
<td>RESTRAINT ASSY, FWD (2)</td>
<td>140318</td>
<td>(2.27)</td>
<td>5.0</td>
<td>(8.93)</td>
<td>(34.8)</td>
<td>X</td>
</tr>
<tr>
<td>4G</td>
<td>SEAT BELT ASSY - REAR (2)</td>
<td>140262</td>
<td>(1.36)</td>
<td>3.0</td>
<td>(5.31)</td>
<td>(20.9)</td>
<td></td>
</tr>
<tr>
<td>5G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equipment List

MR-EQ-H1

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (Pounds)</th>
<th>ARM (cm)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. AVIONICS & AUTOPILOTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H</td>
<td>NAT AABO INTERVOX</td>
<td>810150</td>
<td>(.32)</td>
<td>.7</td>
<td>(43.2)</td>
<td>17.0</td>
</tr>
<tr>
<td>2H</td>
<td>KING KLN90A GPS</td>
<td>810427</td>
<td>(3.13)</td>
<td>6.9</td>
<td>(59.44)</td>
<td>23.4</td>
</tr>
<tr>
<td>3H</td>
<td>KING KCS-55A</td>
<td>810150</td>
<td>(5.14)</td>
<td>11.34</td>
<td>(168.8)</td>
<td>66.46</td>
</tr>
<tr>
<td>4H</td>
<td>KING KMA-24</td>
<td>810150</td>
<td>(.77)</td>
<td>1.7</td>
<td>(48.26)</td>
<td>19.0</td>
</tr>
<tr>
<td>5H</td>
<td>TERRA ENCODER</td>
<td>810150</td>
<td>(.23)</td>
<td>.50</td>
<td>(30.48)</td>
<td>12.0</td>
</tr>
<tr>
<td>6H</td>
<td>KING KLN-90B GPS</td>
<td>810434</td>
<td>(3.13)</td>
<td>6.9</td>
<td>(59.44)</td>
<td>23.4</td>
</tr>
<tr>
<td>7H</td>
<td>DAVID CLARK ISOCOM</td>
<td>810150</td>
<td>(.32)</td>
<td>.70</td>
<td>(43.18)</td>
<td>17.0</td>
</tr>
<tr>
<td>8H</td>
<td>KING KX 155</td>
<td>810150</td>
<td>(2.3)</td>
<td>5.1</td>
<td>(36.65)</td>
<td>14.43</td>
</tr>
<tr>
<td>9H</td>
<td>KING KX 165</td>
<td>810150</td>
<td>(2.6)</td>
<td>5.7</td>
<td>(36.53)</td>
<td>14.38</td>
</tr>
<tr>
<td>10H</td>
<td>KING KI 203</td>
<td>810150</td>
<td>(.73)</td>
<td>1.6</td>
<td>(38.1)</td>
<td>15.0</td>
</tr>
<tr>
<td>11H</td>
<td>KING KR 87 w/KI 229</td>
<td>810150</td>
<td>(3.61)</td>
<td>8.0</td>
<td>(112.4)</td>
<td>44.25</td>
</tr>
<tr>
<td>12H</td>
<td>KING KR 87</td>
<td>810150</td>
<td>(2.41)</td>
<td>5.2</td>
<td>(148.3)</td>
<td>58.4</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (Kg)</td>
<td>WEIGHT (POUNDS)</td>
<td>ARM (CM)</td>
<td>MARK IF INSTALLED</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>13H</td>
<td>KING KN 62A</td>
<td>810150</td>
<td>(1.20)</td>
<td>2.6</td>
<td>(38.1)</td>
<td></td>
</tr>
<tr>
<td>14H</td>
<td>KING KT 76A</td>
<td>810150</td>
<td>(1.4)</td>
<td>3.1</td>
<td>(37.1)</td>
<td></td>
</tr>
<tr>
<td>15H</td>
<td>KING KFC 150</td>
<td>810150</td>
<td>(13.4)</td>
<td>29.5</td>
<td>(204.0)</td>
<td></td>
</tr>
<tr>
<td>16H</td>
<td>KING KR87 w/KI227</td>
<td>810150</td>
<td>(2.67)</td>
<td>5.9</td>
<td>(136.1)</td>
<td></td>
</tr>
<tr>
<td>17H</td>
<td>KING KLN89B</td>
<td>810434</td>
<td>(1.43)</td>
<td>3.15</td>
<td>(86.7)</td>
<td></td>
</tr>
<tr>
<td>18H</td>
<td>INSIGHT STRIKEFINDER</td>
<td>810430</td>
<td>(2.0)</td>
<td>4.35</td>
<td>(220.0)</td>
<td></td>
</tr>
<tr>
<td>19H</td>
<td>INSIGHT GEM MODEL 602</td>
<td>950248</td>
<td>(1.20)</td>
<td>2.6</td>
<td>(-7.6)</td>
<td>-3.0</td>
</tr>
<tr>
<td>20H</td>
<td>GARMIN 155 GPS</td>
<td>810433</td>
<td>(1.0)</td>
<td>2.2</td>
<td>(36.5)</td>
<td></td>
</tr>
<tr>
<td>21H</td>
<td>DRE SYMPHONY INTERCOM</td>
<td>810202</td>
<td>(1.55)</td>
<td>1.22</td>
<td>(81.28)</td>
<td>32.0</td>
</tr>
<tr>
<td>22H</td>
<td>INTERCOM (QUITE FLITE)</td>
<td>810150</td>
<td>(1.23)</td>
<td>0.5</td>
<td>(48.3)</td>
<td>19.0</td>
</tr>
<tr>
<td>23H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equipment List

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (POUNDS)</th>
<th>ARM (CM)</th>
<th>ARM (INCHES)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.</td>
<td>Avionics & Autopilots (Con't)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26H</td>
<td>KT71-00 Transponder</td>
<td>810150</td>
<td>(1.8)</td>
<td>(39.6)</td>
<td>15.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26H</td>
<td>K1229 RMI</td>
<td>810150</td>
<td>(1.3)</td>
<td>(45.7)</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27H</td>
<td>AA80 Inter-Vox</td>
<td>810202</td>
<td>(3.2)</td>
<td>(43.2)</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28H</td>
<td>AA83 Inter-Vox (Music)</td>
<td>810202</td>
<td>(3.2)</td>
<td>(43.2)</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29H</td>
<td>WX10/10A</td>
<td>810413</td>
<td>(5.6)</td>
<td>(245.1)</td>
<td>96.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30H</td>
<td>WX1000/1000+ Series III</td>
<td>810197</td>
<td>(5.0)</td>
<td>(283.3)</td>
<td>111.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31H</td>
<td>KAP 150 PA (KFC-150)</td>
<td>830081</td>
<td>(13.2)</td>
<td>(206.5)</td>
<td>82.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32H</td>
<td>KAS297B Alt. Preselect</td>
<td>830081</td>
<td>(1.4)</td>
<td>(29.7)</td>
<td>11.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33H</td>
<td>EHIS 40</td>
<td>810247</td>
<td>(15.8)</td>
<td>(226.1)</td>
<td>81.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34H</td>
<td>KRA 10 Radar Alt.</td>
<td>810150</td>
<td>(1.7)</td>
<td>(149.4)</td>
<td>58.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35H</td>
<td>Fuel Flow (Shadin)</td>
<td>820336</td>
<td>(0.63)</td>
<td>(46.9)</td>
<td>18.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36H</td>
<td>GPS 155 (Garmin)</td>
<td>810433</td>
<td>(1.5)</td>
<td>(58.4)</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EQUIPMENT LIST

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (POUNDS)</th>
<th>ARM (cm)</th>
<th>ARM (INCHES)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. AVIONICS & AUTOPILOT'S (CONT')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37H</td>
<td>KING KX155A-w/GLIDE SLOPE</td>
<td>810150</td>
<td>1.81</td>
<td>4.0</td>
<td>36.9</td>
<td>14.54</td>
<td></td>
</tr>
<tr>
<td>38H</td>
<td>KING KX155A-</td>
<td>810150</td>
<td>1.59</td>
<td>3.5</td>
<td>36.9</td>
<td>14.54</td>
<td></td>
</tr>
<tr>
<td>39H</td>
<td>KING KI 204</td>
<td>810150</td>
<td>0.77</td>
<td>1.7</td>
<td>38.1</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>40H</td>
<td>KING KT 76C</td>
<td>810150</td>
<td>1.09</td>
<td>2.4</td>
<td>38.1</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>41H</td>
<td>BOSE HEADSET (w/INTERFACE)</td>
<td>810150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42H</td>
<td>PMA 7000MS</td>
<td>810150</td>
<td>1.0</td>
<td>2.2</td>
<td>73.7</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>43H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOCATION WILL VARY
EQUIPMENT LIST

I. AUXILIARY EQUIPMENT (FLY AWAY)

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (Pounds)</th>
<th>ARM (cm)</th>
<th>INCHES</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>TOW BAR, FOLDING (STOWED)</td>
<td>010036</td>
<td>(1.03)</td>
<td>2.6</td>
<td>(327.1)</td>
<td>107.5</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>JACK POINTS (2) (STOWED)</td>
<td></td>
<td>(.07)</td>
<td>.1</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>31</td>
<td>EYE BOLT, WING TIE DOWN (2) (STOWED)</td>
<td></td>
<td>(.09)</td>
<td>.1</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>41</td>
<td>FUEL SAMPLER CUP (STOWED)</td>
<td></td>
<td>(.04)</td>
<td>.05</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>51</td>
<td>BAGGAGE TIE DOWNS (2) (STOWED)</td>
<td></td>
<td>(.04)</td>
<td>.16</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>61</td>
<td>CARGO RESTRAINT BELTS (2) (STOWED)</td>
<td></td>
<td>(.27)</td>
<td>1.0</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>71</td>
<td>PITOT COVER (STOWED)</td>
<td></td>
<td>(.03)</td>
<td>.3</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>81</td>
<td>POH/AFM No. - MOONEY</td>
<td></td>
<td>(.84)</td>
<td>1.5</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>91</td>
<td>ENGINE OPERATOR'S MANUAL - LYCOMING</td>
<td></td>
<td>(.35)</td>
<td>.5</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>101</td>
<td>ENGINE LOG BOOK</td>
<td></td>
<td>(.07)</td>
<td>.2</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>111</td>
<td>AIRFRAME LOG BOOK</td>
<td>010036</td>
<td>(.063)</td>
<td>.2</td>
<td>(332.7)</td>
<td>131.0</td>
<td>X</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>ITEM DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (KG)</td>
<td>WEIGHT (POUNDS)</td>
<td>ARM (INCHES)</td>
<td>MARK IF INSTALLED</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>1J</td>
<td>ARM REST INSTL, PILOT'S SEAT</td>
<td>140295</td>
<td>(.95)</td>
<td>2.1</td>
<td>(34.5)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2J</td>
<td>LUMBAR SUPPORT INSTL. (2)</td>
<td>140300</td>
<td>(.99)</td>
<td>2.18</td>
<td>(35.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3J</td>
<td>ACCESS PANEL, FUEL GAUGE (2)</td>
<td>210099</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4J</td>
<td>RECOGNITION LIGHT INSTL (2)</td>
<td>210413</td>
<td>(.60)</td>
<td>1.32</td>
<td>(153.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5J</td>
<td>RUDDER PEDAL EXTENSION INSTL</td>
<td>720115</td>
<td>(.059)</td>
<td>.13</td>
<td>(38.1)</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>6J</td>
<td>AUX. POWER RECPT. INSTL.</td>
<td>800166</td>
<td>(1.48)</td>
<td>3.27</td>
<td>(331.9)</td>
<td>131.0</td>
<td></td>
</tr>
<tr>
<td>7J</td>
<td>AUX. POWER CABLE ADAPTER</td>
<td>880042</td>
<td>(3.43)</td>
<td>7.57</td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8J</td>
<td>DUAL BRAKE INSTL</td>
<td>950112</td>
<td>(1.38)</td>
<td>3.05</td>
<td>(38.1)</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>9J</td>
<td>STATIC DISCHARGE INSTL</td>
<td>950253</td>
<td></td>
<td></td>
<td></td>
<td>NEGLIGIBLE DIFFERENCE</td>
<td></td>
</tr>
<tr>
<td>10J</td>
<td>STEP ASSY & INSTL</td>
<td>950256</td>
<td>(1.25)</td>
<td>2.75</td>
<td>(27.4)</td>
<td>108.0</td>
<td></td>
</tr>
<tr>
<td>11J</td>
<td>FIRE EXTINGUISHER INSTL</td>
<td>130328</td>
<td>(1.20)</td>
<td>2.65</td>
<td>(53.7)</td>
<td>60.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NORMALLY STOWED IN BAGGAGE COMPARTMENT BETWEEN STA. 110 & 130.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equipment List

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM DESCRIPTION</th>
<th>REF. DRAWING</th>
<th>WEIGHT (Kg)</th>
<th>WEIGHT (Pounds)</th>
<th>ARM (cm)</th>
<th>ARM (INCHES)</th>
<th>MARK IF INSTALLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Optional Equipment (Cont')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13J</td>
<td>Anti-Collision Beacon, Flashing (Red)</td>
<td>950272</td>
<td>(.48)</td>
<td>1.06</td>
<td>(457.2)</td>
<td>180.0</td>
<td></td>
</tr>
<tr>
<td>14J</td>
<td>Anti-Collision Beacon, Rotating (Red)</td>
<td>950252</td>
<td>(.68)</td>
<td>1.5</td>
<td>(457.2)</td>
<td>180.0</td>
<td></td>
</tr>
<tr>
<td>15J</td>
<td>Tanis Heater</td>
<td>950209</td>
<td>(.78)</td>
<td>1.71</td>
<td>(-62.87)</td>
<td>-24.75</td>
<td></td>
</tr>
<tr>
<td>16J</td>
<td>Headrest Instl., Rear</td>
<td>140313/140323</td>
<td>(1.57)</td>
<td>3.47</td>
<td>(203.20)</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>17J</td>
<td>Headrest Instl., Front</td>
<td>140313/140323</td>
<td>(1.57)</td>
<td>3.47</td>
<td>(114.3)</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>18J</td>
<td>Skymap</td>
<td>810218</td>
<td>(8.71)</td>
<td>192</td>
<td>(159.25)</td>
<td>62.7</td>
<td></td>
</tr>
<tr>
<td>19J</td>
<td>Defroster Blower</td>
<td>640314</td>
<td>(.39)</td>
<td>.87</td>
<td>(24.1)</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>20J</td>
<td>3 Passenger, Rear, Bench Seat</td>
<td>140305</td>
<td>NO CHANGE</td>
<td>NO CHANGE</td>
<td>NO CHANGE</td>
<td>NO CHANGE</td>
<td></td>
</tr>
<tr>
<td>21J</td>
<td>TKS Airframe/Wings</td>
<td>690007</td>
<td>(16.8)</td>
<td>36.5</td>
<td>(202.3)</td>
<td>79.6</td>
<td>(No Fluid)</td>
</tr>
<tr>
<td>22J</td>
<td>TKS Propeller (Known Icing).</td>
<td>690007'</td>
<td>(18.1)</td>
<td>39.8</td>
<td>(203.5)</td>
<td>80.1</td>
<td>(No Fluid)</td>
</tr>
<tr>
<td>23J</td>
<td>TKS - Fluid (6 Gallons)</td>
<td>690007</td>
<td>(25.0)</td>
<td>55.2</td>
<td>(179.6)</td>
<td>70.7</td>
<td></td>
</tr>
<tr>
<td>24J</td>
<td>WX-950 Stormscope</td>
<td>810437</td>
<td>(2.7)</td>
<td>5.9</td>
<td>(175.4)</td>
<td>69.1</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>ITEM DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (Kg)</td>
<td>WEIGHT (POUNDS)</td>
<td>ARM (cm)</td>
<td>INS. MARK</td>
<td>IF INSTALLED</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>J</td>
<td>OPTIONAL EQUIPMENT (CON'T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>ITEM DESCRIPTION</td>
<td>REF. DRAWING</td>
<td>WEIGHT (Kg)</td>
<td>WEIGHT (POUNDS)</td>
<td>ARM (cm)</td>
<td>ARM (INCHES)</td>
<td>MARK IF INSTALLED</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>J</td>
<td>OPTIONAL EQUIPMENT (CONT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>PAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRFRAME</td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLIGHT CONTROLS DESCRIPTION</td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AILeron SYSTEM</td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEVATOR SYSTEM</td>
<td>7-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUDDER SYSTEM</td>
<td>7-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STABILIZER TRIM SYSTEM</td>
<td>7-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUDDER TRIM SYSTEM</td>
<td>7-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WING FLAPS</td>
<td>7-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTRUMENT PANEL</td>
<td>7-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLIGHT PANEL & INSTRUMENTS</td>
<td>7-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWITCHES & CONTROLS</td>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANNUNCIATOR & SWITCH PANEL</td>
<td>7-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND CONTROL</td>
<td>7-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOSE GEAR STEERING</td>
<td>7-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAXIING AND GROUND HANDLING</td>
<td>7-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING GEAR</td>
<td>7-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td>7-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETRACTION SYSTEM</td>
<td>7-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHEEL BRAKES</td>
<td>7-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY EXTENSION SYSTEM</td>
<td>7-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARNING SYSTEM</td>
<td>7-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEERING</td>
<td>7-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABIN</td>
<td>7-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAGGAGE COMPARTMENT</td>
<td>7-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CARGO RESTRAINT</td>
<td>7-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEATS</td>
<td>7-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEAT BELTS/SAFETY HARNESS</td>
<td>7-17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOORS, WINDOWS & EXITS</td>
<td>7-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABIN DOOR</td>
<td>7-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PILOT'S WINDOW</td>
<td>7-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMERGENCY EXITS</td>
<td>7-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE</td>
<td>7-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>7-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE CONTROLS</td>
<td>7-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE INSTRUMENTS</td>
<td>7-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGINE OPERATION AND CARE</td>
<td>7-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OIL SYSTEM</td>
<td>7-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (con’t)

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE (con’t.)</td>
<td></td>
</tr>
<tr>
<td>IGNITION SYSTEM</td>
<td>7-20</td>
</tr>
<tr>
<td>AIR INDUCTION SYSTEM</td>
<td>7-20</td>
</tr>
<tr>
<td>ICING PROTECTION</td>
<td>7-20</td>
</tr>
<tr>
<td>EXHAUST SYSTEM</td>
<td>7-20</td>
</tr>
<tr>
<td>FUEL INJECTION</td>
<td>7-21</td>
</tr>
<tr>
<td>ENGINE COOLING AIR.</td>
<td>7-21</td>
</tr>
<tr>
<td>ENGINE STARTING SYSTEM</td>
<td>7-21</td>
</tr>
<tr>
<td>ACCESSORIES</td>
<td>7-21</td>
</tr>
<tr>
<td>PROPELLER</td>
<td>7-22</td>
</tr>
<tr>
<td>FUEL SYSTEM</td>
<td>7-22</td>
</tr>
<tr>
<td>ELECTRICAL SYSTEM</td>
<td></td>
</tr>
<tr>
<td>ALTERNATOR & BATTERY</td>
<td>7-23</td>
</tr>
<tr>
<td>SCHEMATIC</td>
<td>7-24</td>
</tr>
<tr>
<td>ANNUNCIATOR PANEL</td>
<td>7-25</td>
</tr>
<tr>
<td>CIRCUIT BREAKER PANEL</td>
<td>7-25</td>
</tr>
<tr>
<td>ELT PANEL</td>
<td>7-25</td>
</tr>
<tr>
<td>LIGHTING SYSTEM</td>
<td>7-25</td>
</tr>
<tr>
<td>CABIN ENVIRONMENT</td>
<td>7-26</td>
</tr>
<tr>
<td>PITOT PRESSURE & STATIC SYSTEM</td>
<td>7-26</td>
</tr>
<tr>
<td>STALL WARNING SYSTEM</td>
<td>7-27</td>
</tr>
<tr>
<td>OXYGEN SYSTEM</td>
<td>7-27</td>
</tr>
<tr>
<td>VACUUM SYSTEM</td>
<td>7-28</td>
</tr>
<tr>
<td>EMERGENCY LOCATOR TRANSMITTER</td>
<td>7-30</td>
</tr>
<tr>
<td>E.L.T. REMOTE SWITCH OPERATION</td>
<td>7-30</td>
</tr>
</tbody>
</table>
AIRPLANE AND SYSTEM DESCRIPTION

INTRODUCTION

Acquiring a working knowledge of the aircraft's controls and equipment is one of your important first steps in developing a fully efficient operating technique. This Airplane and Systems Section describes location, function, and operation of systems' controls and equipment. It is recommended that you, the pilot, familiarize yourself with all controls and systems while sitting in the pilot's seat and rehearsing the systems operations and flight procedures portions of this manual.

AIRFRAME

The M20R is an all metal, low wing, high performance airplane. The fuselage has a welded, tubular-steel cabin frame covered with non-structural aluminum skins. Access to the cabin is provided by a door located on the right side of the fuselage. A door is provided aft of the rear seat for access to the baggage compartment. The aft fuselage, tailcone, is of semi-monocoque construction.

Seating in the cabin is provided for the pilot and three passengers.

The M20R has a tapered, full-cantilever, laminar-flow type wing. The airfoil varies from a NACA 632-215 at the wing root to a NACA 644-412 at the wing tip, modified by an inboard leading edge cuff.

An aerodynamically designed cover is attached to the wing tip and contains the wing navigation, anti-collision and optional recognition lights. Wrap-around stretched formed skins cover the wing; flush riveting is used on the forward, top and bottom two thirds of the wing chord to provide benefit of laminar flow aerodynamics.

The empennage consists of the vertical and horizontal stabilizer assembly and the rudder and elevator surfaces. The entire empennage pivots around attaching points on the aft fuselage to provide pitch attitude trim.

The tricycle landing gear allows maximum vision and ground maneuvering. Hydraulic disc brakes and a steerable nose wheel aid in directional control during taxiing and ground operations. The landing gear is electrically retracted and extended. A warning horn, a gear position indicator on the floorboard and a green "GEAR DOWN" light help prevent inadvertent gear-up landings. A manual emergency gear extension system is provided in the event of electrical failure.

FLIGHT CONTROLS DESCRIPTION

The aircraft has dual flight controls and can be flown from either the pilot or co-pilot seat. Dual pairs of foot pedals control rudder and nose wheel steering mechanisms. Push-pull tubes, rather than conventional cable/pulley systems, actuate all-metal flight control surfaces. Rod-end bearings are used throughout the flight control systems. These bearings are simple and require little maintenance other than occasional lubrication. Specially designed aluminum-alloy extrusions, that permit flush skin attachment, form the leading edges of the rudder and elevators. A spring-loaded interconnect device indirectly joins aileron and rudder control systems to assist in lateral stability during flight maneuvers. Longitudinal pitch trim is achieved through a trim control system that pivots the entire empennage around tailcone attachment points. A variable down-spring located in the tailcone and a bobweight located forward of the control column help create desirable stability characteristics.

Aileron System

The ailerons are of all-metal construction with beveled trailing edges. Three hinges of machined, extruded aluminum attach each aileron to aileron spar outboard of wing flaps. The ailerons link to the control wheel through push-pull tubes and bellcranks. Counterweights balance the system.

Elevator System

Elevator construction is essentially the same as that of the ailerons. Both elevators attach to the horizontal stabilizer at four hinge points. Push-pull tubes and bellcranks link the elevators to the control wheel. Counterweights balance the elevators.
SECTION VII
AIRPLANE AND SYSTEM DESCRIPTION

MOONEY
M20R

Rudder System

The rudder attaches to the aft, vertical fin spar at four hinge points. Push-pull tubes and bellcranks link rudder to the rudder pedals.

Stabilizer Trim System

To provide pitch trim control, the entire empennage pivots around its main hinge points. The system consists of a manually operated (electrical operation optional) actuator that operates a series of torque tubes and universal joints connected to a jack screw on the aft tailcone bulkhead. A trim control wheel, located between pilot and co-pilot seats, allows pilot to set stabilizer trim angle. Trim position is indicated by an electrical gauge (LED) located in the lower center instrument panel. The indicator is controlled by a potentiometer. This indicates stabilizer position relative to the aircraft thrust line.

Rudder Trim System

The M20R is equipped with an electric rudder trim system which allows the pilot to trim out much of the rudder force required for takeoff, climb, cruise and descent. The system is a "bungee" type spring assembly, attached to the rudder control system and driven by an electric motor. The trim system is operated by a split, toggle switch located above the throttle on the pilot's panel. The split switch is a safety measure that greatly reduces the possibility of a runaway trim situation. The electric trim indicator (LED) is located adjacent to the toggle switch. A potentiometer controls the rudder trim position indicator. Takeoff position is within the last 3 lighted segments on the right end of the indicator. Rudder force varies from negligible (with trim to the far right) to mild (with trim set to the third segment from the right). Cruise setting will result in the trim indicator being slightly left of neutral. A high speed descent will result in an even more left of neutral position.

Wing Flaps

The wing flaps are electrically operated and interconnected through a torque tube and bellcranks. Total flap area is 17.96 square feet. Nominal travel is 0 to 33°. Limit switches prevent travel beyond these limits. Wing flap position is controlled by a pre-select switch located on the lower center console. Also located on the center console is a flap position indicator showing which pre-select position has been selected: full up, takeoff (10°) or full down positions. A potentiometer controls the flap position indicator (LED). Generally, aircraft trim requirements will change with use of the flaps. Lowering of the flaps will cause a nose down pitching condition which can be easily corrected by application of nose up trim. Conversely, retraction of the flaps, from a trimmed flight condition, will cause a nose up pitching condition. Use of flaps should always be within the operational limits established in SECTION II. The flaps are very effective in lowering landing speed and can be used to slow the aircraft to approach speeds.

INSTRUMENT PANEL

The instrument panel is designed to provide functional grouping of all flight, radio, engine instruments, switches and controls required to operate various systems. All flight instruments are grouped on the shock-mounted panel directly in front of the pilot. Power plant instruments are grouped into two clusters and located to the right of the flight instruments. The radio panel is in two sections, slightly left and forward of co-pilot's seat. The annunciator panel and optional radio console are on the left section of the radio panels. The circuit breaker panel is located on the far right, in front of the co-pilot's seat.

FLIGHT PANEL & INSTRUMENTS

Flight instruments operate: (1) by barometric pressure or barometric-impact air pressure differences, (2) by variations in electric current due to mechanically varied resistance, (3) by air drawn into an evacuated case or (4) by reference to the earth's magnetic field.
1. CLOCK - (S/N 29-0001 thru 29-0169) (Refer to Figure 7-1)
The electric, digital, panel mounted clock, may be used and set by the following procedures:

Three buttons are located below digital face of clock and identified as START/STOP, CLEAR & MODE.

- **Normal or Elapsed time**
 - **MODE** - Push to switch from normal time to elapsed time.
 - **START/STOP** - Push to start or stop seconds when in elapsed time mode.
 - **CLEAR** - Push to reset elapsed time to Zero.

- **Set Hours, Minutes or 24 vs 12 hour time**
 - Push and Hold CLEAR button for 4 - 5 seconds to enter clock set mode; 12 H or 24 H will flash.
 - Push START/STOP button to select either 12 or 24 hour mode.
 - Push CLEAR to select hours (hours flashing/minutes steady) or minutes (hour steady/minutes flashing) for setting.
 - Push START/STOP to increase either hours or minutes until desired time is set.
 - Push MODE to return to normal time.

1. CLOCK (S/N 29-0170 thru 29-0199) (Refer to Figure 7-1A)
The electric, digital, panel mounted DAVTRON Model 800 clock, may be used and set by the following procedures:

The SEL button selects what is to be displayed on the four digit window and the CTL button controls what is being displayed. Pressing select sequentially selects GMT, Local Time, Elapsed Time and back to GMT. The control button starts and resets Elapsed Time when momentarily pushed. Normal operation of the M800 cannot accidentally reset time.

SETTING GMT
Select GMT for display in the four digit window with the SEL button. Simultaneously press both the select and control buttons to enter the set mode. The tens of hours digit will start flashing. The control button has full control of the flashing digit and each button push increments the digit. Once the tens of hours is set, the select button selects the next digit to be set. After the last digit has been selected and set with the control button, a final push of the select button exits the mode. The lighted annunciator will resume its normal flashing, indicating the GMT clock is running.
SETTING LOCAL TIME
Select Local Time (LT) using the SEL button. Simultaneously push the SEL and CTL buttons to enter set mode. The tens of hours digit will start flashing. The set operation is the same as GMT, except that minutes are already synchronized with the GMT clock and cannot be set in Local Time.

TEST MODE
Hold SEL button down for three seconds and the display will indicate 88:88 and activate all four annunciators.

ELAPSED TIME COUNT "UP"
Select ET for display. Press CTL button, ET count will start. Elapsed Time counts up to 59 minute, 59 seconds, and then switches to hours and minutes. It continues counting up to 99 hours and 59 minutes. Press CTL button again to reset to zero.

ELAPSED TIME COUNT "DOWN"
Select ET display and enter set mode by pressing both buttons. The countdown time can now be set. Entering the time is identical to GMT time setting. When the time is entered and the last digit is no linge flashing, the clock is ready to start the countdown. Momentarily pressing the CTL button starts the countdown. When the count reaches zero, the displays flash and the external alarm is activated. Pressing either SEL or CTL will deactivate the alarm. ET continues counting UP.

2. AIRSPEED INDICATOR
The airspeed indicator registers airspeed in knots. The air pressure difference between the pitot tube and static ports on each side of the tailcone operates the airspeed indicator.

3. ARTIFICIAL HORIZON
Varies with installed equipment.

4. ALTIMETER
The altimeter operates by absolute pressure and converts barometric pressure to altitude reading in feet above mean sea level. The altimeter has a fixed dial with three pointers to indicate hundreds, thousands and tens-of-thousands of feet. Barometric pressure is sensed.
through the static ports. A knob adjusts a movable dial, a small window on the face of the main
dial, to indicate local barometric pressure and to correct the altimeter reading for prevailing
conditions.

5. TURN COORDINATOR
The turn coordinator operates from an electric power source. The turn coordinator is inde-
pendent of the flight reference gyros. The turn coordinator displays variation in roll and yaw to
the pilot by means of a damped miniature aircraft silhouette display - this provides the pilot
with essential information to execute a “proper turn”.

6. GYROSCOPIC HEADING INDICATOR (DG)
The vacuum operated directional gyro displays airplane heading on a compass card in rela-
tion to a fixed simulated airplane image and index. The directional indicator may precess
slightly over a period of time. Therefore, the compass card should be set in accordance with
the magnetic compass just prior to takeoff and occasionally checked and readjusted on ex-
tended flights. A knob on the lower left edge of the instrument is used to adjust the compass
card to correct for any precession. A slaved flux gate compass is optional; if installed and ON
will keep the DG corrected during the flight.
Optional equipment may be installed as desired.

7. VERTICAL SPEED INDICATOR
The vertical speed indicator converts barometric pressure changes in the static lines to aircraft
ascent or descent rate readings in feet per minute. This indicator has a single needle and two
adjoining scales that read from 0 to 2000 feet per minute.

8. AUTOMATIC DIRECTION FINDER (INDICATOR) (ADF)

9. NAVIGATION INSTRUMENT NO. 2.

10. (OPTIONAL) Stormscope, Second Altimeter, etc.

11. MANIFOLD PRESSURE
The manifold pressure gauge is of the direct reading type. The gauge is calibrated in inches of
mercury (Hg) and indicates the pressure in the induction air manifold.

12. TACHOMETER
The tachometer is an electronic meter which counts ignition pulses. The instrument is cali-
brated in engine revolutions per minute (RPM).

13. FUEL FLOW
Fuel flow gauge - an electric instrument operating from information provided by a fuel flow
transducer. The gauge indicates fuel flow being used by the engine. The FT-101A system will
depict the quantity of fuel used when the “USED” button is pushed.

14. AMMETER
Ammeter indicates battery charge or discharge. A PUSH for VOLTS button is available to show
buss voltage if desired. Voltage is read on a separate scale using the same needle.

15 & 16. FUEL QUANTITY INDICATORS
Fuel quantity indicators are used in conjunction with float-operated variable-resistance trans-
mitters in each fuel tank. Tank-full position of transmitter floats produces maximum resistance
through the transmitters, permitting minimum current flow through fuel quantity indicator and
maximum pointer deflection. Instruments are calibrated in portions of tank volume.

17. VACUUM INDICATOR Indicates operating vacuum pump pressure. Location varies
on panel.

18. OIL PRESSURE
Electrical instrument - uses a transducer as a reference. Calibrated in pounds per square inch
(PSI).

19. OAT (Outside Air Temperature)
Outside air temperature gauge provides pilot with free stream outside air temperature in ° C.
Location may vary on panel.

20. EXHAUST GAS TEMPERATURE (EGT)
A thermocouple probe, located at junction of #1, 3 & 5 exhaust pipes, transmits temperature
variations to the indicator which serves as a visual aid during leaning. EGT varies with fuel-air
ratio, power and RPM. Engine operation within BLUE ARC, during climbs, provides sufficient
fuel to keep engine power within proper temperature range. Location varies on panel.
21. OIL TEMPERATURE
Oil temperature gauge - an electric instrument connected to an electrical resistance bulb on engine. Temperature changes of engine oil change electrical resistance, thereby allowing more or less current to flow through indicating gauge. Instrument is calibrated in °F.

22. CYLINDER HEAD TEMPERATURE
Cylinder head temperature indication is controlled by an electrical resistance type thermometer probe installed in cylinder number 2. The indicator receives power from aircraft electrical system. Instrument is calibrated in °F. A 6 position switch, with probes installed in all cylinders, is optional.

23. ANNUNCIATOR PANEL
See description elsewhere in this SECTION.

24. MAGNETIC COMPASS
Magnetic compass dial is graduated in five-degree increments and is encased in liquid-filled glass and metal case. It is equipped with compensating magnets, adjustable from front of case. Access to compass light and compensating magnets is provided by pivoted covers. No maintenance is required on magnetic compass except an occasional check on a compass rose, adjustment of the compensation screws (if necessary) and replacement of the lamp.

25. HOUR METER
Hour meter - located on baggage compartment bulkhead and indicates elapsed time while engine is running. Location may vary depending on installed systems.

26. RADIO INSTRUMENTS
Refer to SECTION IX for the description of the radio/navigation configuration installed in this aircraft.

27. ALTITUDE PRE-SELECT - OPTIONAL

28. MASTER WARNING LIGHT - When any RED warning light on the panel shows that a system or component is malfunctioning, this MASTER WARN light illuminates in approximately 15-20 seconds after any annunciator light begins to show a malfunction. Pilot should identify the source system warning light on the annunciator, then push the MASTER WARN light (it contains a PUSH switch under the light). MASTER WARN light will extinguish for approximately 2 minutes or until the next system malfunction warning light on the annunciator illuminates. Repair inoperable system prior to next flight.

SWITCHES & CONTROLS

1. MAGNETO/STARTER SWITCH
Magneto/ Starter switch combines both ignition and starting functions. Turning ignition key clockwise through R, L, and BOTH to START position and then pushing forward on key and receptacle, engages starter. Releasing key when engine starts allows switch to return, by spring action, to BOTH position.

2. RADIO MASTER SWITCH
Switch operates a relay supplying power to the avionics buss. Since relay is energized to turn avionics buss OFF, failure of relay coil will still allow electrical power to avionics buss. Energizing starter automatically energizes relay and disconnects all avionics from buss. Electric trim switch, on control wheel, is tied to avionics buss and will not operate unless RADIO MASTER and TRIM switch on pilot's panel are - ON.

3. ALTERNATOR FIELD SWITCH
This switch cuts alternator field power from main buss to alternator.

4. MASTER SWITCH
Master switch operates battery relay which controls battery power (selected battery) to main buss. This switch cuts ALL ship power OFF, except cabin overhead lights, baggage compartment light and electric clock.

5. OPTIONAL - Rotating/Flashing Beacon, etc.

6. STROBE LIGHT (STROBE LITE) SWITCH/CIRCUIT BREAKER
Strobe light combination switch/circuit breaker turns wing tip and tail strobe lights ON. Should short occur, the combination switch/circuit breaker will automatically trip to the OFF position.

7. NAVIGATION LIGHT (NAV LITE) SWITCH/CIRCUIT BREAKER
Navigation light combination switch/circuit breaker turns wing tip and tail navigation lights ON. Should a short occur, the combination switch/circuit breaker will automatically trip to the OFF position.
position. The glareshield and panel lights are also turned on when this switch is ON. Control dimming of either glareshield or panel lights with rotating switches on lower console.

8. RECOGNITION LIGHT (RECOG LITE) (If installed)
Recognition light combination switch/circuit breaker turns recognition light ON. Should a short occur, combination switch/circuit breaker will automatically trip to OFF position.

9. TAXI LIGHT (TAXI LITE) SWITCHES (L & R)
10. LANDING LIGHT (L/G LITE) SWITCHES (L & R)
Select and push split switches to turn desired set of lights ON. Push switches OFF to turn desired set of lights off. Lights should be operated only for short time periods while not in flight to preclude overheating of lamps. Over load protection is achieved by circuit breakers in panel.

11. GEAR SAFETY BY PASS SWITCH (Gear Retraction Override)
Gear safety override switch is a manual means of electrically by-passing the Airspeed Safety Switch. In the event the landing gear switch is placed in gear-up position, a properly operating Airspeed Safety Switch prevents gear from being retracted before takeoff speed of approximately 60 +/- 5 KTS is reached. To retract landing gear at a lower airspeed, the GR SAFETY BY PASS switch may be held de-pressed until landing gear is completely retracted.

~ CAUTION ~

Activation of landing gear safety override switch overrides the safety features of airspeed safety switch and CAN cause landing gear to start retracting while aircraft is on ground.

12. LANDING GEAR SWITCH
Electric gear switch, identified by its wheel shaped knob, is a two-position switch. Pulling aft and lowering knob lowers landing gear while pulling aft and raising knob raises landing gear.

| NOTE |
Failure to "Pull" knob out prior to movement may result in a broken switch.

ISSUED 6 - 94
7 - 9
13. STABILIZER TRIM POSITION INDICATOR
Stabilizer trim position indicator (LED) is electrically activated by a potentiometer attached to trim wheel mechanism. The position signal is transmitted to indicator by resistance readings.

14. FLAP POSITION INDICATOR
Wing flap position is electrically indicated by the (LED) flap indicator, located on flight panel. The intermediate mark on lens is the flap TAKEOFF setting. Signal is transmitted to indicator thru a potentiometer attached to flap mechanism. Position signal is transmitted to indicator by resistance readings.

15. RUDDER TRIM SWITCH
Push split toggle switch to position rudder into trimmed condition to reduce rudder pedal forces during takeoff, climbs or descents. Right - takeoff and climbs; Left - descents. Pushing left side of spring loaded switch trims rudder left, pushing right side of switch trims rudder right.

16. RUDDER TRIM POSITION INDICATOR
Rudder trim position is electrically indicated on an (LED) indicator located adjacent to switch. Signal is transmitted to indicator thru a potentiometer attached to trim mechanism. Position signal is transmitted to indicator by resistance readings.

17. "HIGH BOOST" FUEL BOOST PUMP SWITCH
An electric fuel boost pump, capable of operating engine at reduced power in case of engine driven fuel pump failure, is provided. The guarded switch (lift guard) can be pushed ON to operate engine (at reduced power) if required.

~~~~~~~~~~

CAUTION

Pushing HIGH BOOST pump switch ON when engine driven pump is operating properly will cause engine to quit due to excessive rich fuel mixture.

17A. BOOST PUMP SWITCH (LOW BOOST)
The Low Fuel boost pump switch connects the fuel boost pump through a voltage regulator to provide engine priming capability prior to engine start and to provide a means of purging fuel
vapor from fuel system during extreme temperature situations, either environmental sources or from engine heat soak situations.

18. STAND-BY VACUUM (STBY VAC) SWITCH.
When Hi/LO VAC annunciator light illuminates (steady or flashing), the vacuum operated gyro instruments are considered to be unreliable. STBY VAC switch should be turned ON. Refer to Airborne Service Letter, No. 31, located in Section X.

19. PITOT HEAT SWITCH/CIRCUIT BREAKER
Pitot heat combination switch/circuit breaker turns heating elements within pitot tube on. Should a short occur, the combination switch/circuit breaker will automatically trip to OFF position. "PITOT HEAT" annunciator light will illuminate "BLUE" when switch is ON and current is flowing through pitot heater. On some export aircraft, annunciator will illuminate "AMBER" when switch is OFF and will not be illuminated when ON and drawing current.

20. PROPELLER DE-ICE (PROP DE-ICE) SWITCH (if installed).
See SECTION IX for operating procedures. (29-0001 thru 29-0169)
NOT USED ON FIGURE 2A.

21. ELEVATOR TRIM (ELEC TRIM) SWITCH
Switch is normally left in ON position and serves as both a circuit protector and a master disconnect for the electric trim system in the event of a malfunction. The Radio Master Switch must be ON before power is available to elevator trim system.

22. THROTTLE CONTROL
Push throttle control forward to increase engine power. Pull throttle aft to decrease engine power. Full throttle automatically activates fuel boost pump. Vernier control is optional.

23. PROPELLER CONTROL
Push propeller control forward to increase engine RPM; pull control aft to decrease engine RPM. Control is a vernier type and fine adjustments of RPM can be obtained by turning knob clockwise to increase RPM and counter clockwise to decrease RPM. Knob should not be turned IN any closer than .030" to .060" to panel nut face.

24. MIXTURE CONTROL
Mixture control allows pilot to adjust the fuel-air ratio (mixture) of the engine. Push control forward to enrichen mixture. Pull control full aft to close idle cutoff, shutting down engine. Control is a vernier type and fine adjustments of mixture can be obtained by turning knob clockwise to enrichen mixture and counterclockwise to lean. Knob should not be turned IN any closer than .030" to .060" to panel nut face.

25. WING FLAP SWITCH
Flap switch, on console, operates the electrically-actuated wide span wing flaps. The flap switch incorporates a pre-select feature for TAKEOFF and FULL DOWN positions. Move switch down to first detent position to obtain TAKEOFF flaps (10°). Move switch to full down position to select FULL DOWN flaps (33°). When flap switch is moved UP to either TAKEOFF position or FULL UP position the flaps will retract to the selected position.

~~~
~CAUTION~
~~~
Positioning Flap Switch to the UP position retracts the flaps completely.

26. ALTERNATE STATIC SOURCE VALVE
Pull alternate static source valve full aft to change source of static air for the altimeter, airspeed and vertical speed indicator from outside of aircraft to cabin interior. Airspeed and altimeter readings are affected slightly when alternate static source is used (See Charts in SECTION V).

27. PARKING BRAKE CONTROL
Depress brake pedals and pull parking brake control to set parking brake. Push parking brake control in to release parking brake.

28. CABIN VENT CONTROL (Fresh Air)
Pull cabin vent control aft to open valve in mixing box connected to cabin air inlet NACA vent located on the right side of the airplane. Optimum use of cabin vent control is described in the Cabin Environment Section.

29. CABIN HEAT CONTROL
Pull cabin heat control to turn cabin heat ON. To lower cabin temperature, cabin heat control is pushed forward toward the OFF position. Optimum use of cabin heat control is described in the Cabin Environment Section.
30. DEFROST CONTROL
Pull defrost control to decrease airflow to lower cabin area and increase airflow to windshield ducts in the front of glareshield area. Optimum use of the defrost control is described in the Cabin Environment Section.

31. MIKE JACK (Hand Held Microphone) (EMERGENCY MIC. AND PHONE JACK)
Plug hand held microphone jack into this plug and place microphone in holder located on front of lower console.

32. TRIM CONTROL WHEEL
Rotating trim control wheel forward lowers nose during flight; rearward rotation raises nose of aircraft during flight. If optional electric trim system is installed, pushing both sides of split trim switch, located on left hand portion of pilots control wheel, will electrically trim aircraft.

33. FUEL SELECTOR VALVE
Fuel selector valve, located on floorboard, is a three position valve which allows pilot to select either left or right fuel tank. Turning valve OFF, shuts off ALL fuel to engine. At full throttle engine will stop from fuel starvation in 2 to 3 seconds.

34. GEAR DOWN POSITION INDICATOR (Floorboard)
The gear-down position indicator, near back of fuel selector valve pan, aft of center console, has two marks that align when landing gear is down and illuminates when GREEN GEAR DOWN light is ON. A red-white striped decal shows when landing gear is NOT in the down position.

35. RADIO LIGHT SWITCH AND DIMMER
Turning radio light switch knob clockwise turns radio and indicator lights ON. Continued turning clockwise increases light intensity. This control also operates internal instrument lights.

36. PANEL LIGHT SWITCH AND DIMMER
Turning panel light switch knob clockwise turns instrument lights located in glareshield ON. Continued turning clockwise increases light intensity.

37. CIRCUIT BREAKER PANEL
See details elsewhere in this Section.

38 & 39. CO-PILOT'S HEADSET JACKS.
40 & 41. PILOT'S HEADSET JACKS.

42. FUEL FLOW TOTALIZER INDICATOR & FUEL MEMORY SWITCH.
"Fuel Totalizer" memory is connected to the aircraft battery through a "FUEL MEMORY" switch. Indicates fuel flow being used at given power setting, fuel used, fuel remaining and/or time remaining since last fuel filling, if memory switch has been left ON and system has not been RESET. Optional systems depict different data. (Some optional "Fuel Totalizer" systems do not contain a memory switch.).

43. ANNUNCIATOR PANEL
See description elsewhere in this section.

44. OPTIONAL DIRECTIONAL GYROSCOPIC INDICATOR REMOTE SLAVE and/or COMPENSATION SWITCH.

45. EMERGENCY LOCATOR TRANSMITTER (ELT) SWITCH (ARM/ON)
Place in ARM position for routine operation. Refer to ELT description elsewhere in this section on proper and lawful usage.

46. ALTERNATE AIR (ALT AIR)
Automatically opens when induction air system becomes blocked for any reason. May be opened manually by pulling knob aft. AMBER annunciator light will illuminate when alternate air door is open.

47. BATTERY SELECT SWITCH - BAT 1/BAT 2
This switch allows pilot to select either battery as primary for any flight. Battery #1 is normally used for operations. The battery not being used is recharged through a trickle charge system. It is recommended to switch batteries occasionally.

48. FUEL FLOW MEMORY SWITCH (OPTIONAL FOR S/N 29-0001 thru 29-0169)
Normally left in "ON" position at all times so that "Fuel Used" information is retained from one flight to the next, until reset. Memory switch may be turned OFF to prevent battery drain if aircraft is to be stored for extended periods of time. (Some OPTIONAL "Fuel Flow" systems do not contain a memory switch.)
48. EMERGENCY BUS SWITCH (29-0170 thru 29-0199)  
(Optional when Stand-by Alternator is installed)  
When Low Voltage annunciator light illuminates, steady or flashing, pull 70A BAT circuit breaker and PUS# EMERG BUS switch ON to bring Stand-by Alternator on line.

49. CIGAR LIGHTER (CAUTION 28 volts)

50. STAND-BY VACUUM OPERATIONAL INDICATOR  
RED button is visible when STBY VAC switch is OFF. RED button is pulled back (not visible) when stand-by vacuum pump is operating. This indicator is for pre-flight check only.

51. OPTIONAL - INTER-COM CONTROL PANEL

52. OPTIONAL EQUIPMENT SWITCH(ES)

MAP LIGHT SWITCH/RHEOSTAT, MIC SWITCH, ELECTRIC TRIM SWITCH (if installed) & OPTIONAL AUTO-PILOT SWITCHES are located in the pilot's control wheel.

ANNUNCIATOR & SWITCH PANEL

ANNUNCIATOR

A. PRESS-TO-TEST SWITCH  
Press RED press-to-test switch (3-5 sec.) with Master Switch ON to illuminate light bulbs (some annunciator legends may not be active, see descriptions below). Defective bulbs must be replaced prior to flight. Includes MASTER WARN light on S/N 29-0170 thru 29-0199

B. DIM SWITCH  
The DIM switch may be activated after the low fuel lights come on bright. The switch will dim both low fuel lights but will not turn them off. To restore display to bright, press TEST switch.

1. GEAR SAFETY INDICATOR (GEAR DOWN)  
2. GEAR SAFETY INDICATOR (GEAR UNSAFE)  
A GEAR DOWN light (GREEN), a GEAR UNSAFE light (RED), and a warning horn provide visual and audible gear position signals. The green (GEAR DOWN) light shows continuously when gear is fully extended. With navigation lights ON, the GEAR DOWN light is dimmed for night operation. All gear lights are OUT when landing gear is fully retracted. Additional verification is accomplished by checking floorboard indicator window.

3. LEFT FUEL  
4. RIGHT FUEL  
Left and/or right, fuel annunciator light (RED) comes on when there is 2-1/2 to 3 gallons (9.5 to 11.4 liters) for S/N 29-0001 thru 29-0169; 6 to 8 gallons (23 to 30.3 liters) for S/N 29-0170 thru 29-0199, of usable fuel remaining in the respective tank.

FIGURE 7 - 3 ANNUNCIATOR & SWITCH PANEL  
S/N 29-0001 THRU 29-0169

ISSUED 6 - 94  
REV. G  
7 - 13
5. **SPEED BRAKE**
Illuminates AMBER when speed brakes are extended.

6. **ALT AIR**
Illuminates AMBER when the alternate air door is opened, either manually or automatically. In this situation, induction air for the engine is drawn from inside cowling rather than through the NACA induction air intake. The normal induction air system MUST be checked, for proper operation, prior to next flight.

7. **PROP DE-ICE**
Illuminates BLUE when Propeller De-ice has been selected ON.

8. **PITOT HEAT**
Illuminates BLUE when pilot has selected PITOT HEAT rocker switch ON. Some exported aircraft will illuminate AMBER when switch is OFF or when there is any type of electrical failure in the pitot heat system and WILL NOT BE illuminated when the switch is ON.

9. **HI/LO VAC**
A RED light indicates a malfunction or improper adjustment of vacuum system. Vacuum is available for operation of attitude gyro and directional gyro. Designated vacuum range is 4.25 ±. .25 to 5.5 ±.2/.0 inches of mercury (Hg). The HI/LO VAC light will BLINK WHEN VACUUM IS BELOW 4.25 in. Hg, and illuminate STEADY WHEN VACUUM IS ABOVE 5.5 in. Hg. In either case, gyroscopes should not be considered reliable during this warning time. Refer to Airborn Service Letter No. 31, located in Section X.

10. **ALT VOLTS**
A RED light indicates improper voltage supply. A FLASHING RED light indicates alternator voltage output is below load requirements or no voltage from alternator; a STEADY RED light indicates overvoltage or tripped voltage relay.

11. **SPARE**

12. **START POWER**
Illuminates RED when the starter switch or relay has malfunctioned and the starter is engaged while the engine is running. Shut the engine off as soon as practicable.

13. **STBY VAC**
Illuminates AMBER when Stand by Vacuum Switch has been selected to ON.

14. **REMOTE RNAV** (Optional)
Illuminates when DME 2 is selected and optional RNAV system is not functioning.

15. **SPARE** (S/N 29-0001 THRU 29-0169)
15. **EMERGENCY BUS** (S/N 29-0170 THRU 29-0199) (OPTIONAL)
Illuminates when the EMERG BUS switch is selected ON to bring Standby Alternator on line.
16. BOOST PUMP
Illuminates BLUE when the Electric Fuel Boost Pump is selected ON. Light comes on high intensity when HI BOOST switch is ON and low intensity when LOW BOOST switch is ON.

SWITCH PANELS & ANNUNCIATOR PANELS WILL VARY WITH AIRCRAFT

C., D., E. NAVIGATION MODE SELECTION SWITCHES (Figure 7-3A)

17. ELT SWITCH (29-0001 THRU 29-0169)
17. MARKER BEACONS (29-0170 thru 29-0199)
Illuminates applicable colors as aircraft passes over marker beacons on approach.

18. OPTIONAL SWITCHES (29-0001 thru 29-0169)
18. NAVIGATION SELECTION LIGHTS (29-0170 thru 29-0199)
Illuminates as the pilot selects the navigation system desired. Varies with installed equipment.

19. ELT SWITCH (29-0170 thru 29-0199)
20. OPTIONAL SWITCHES (29-0170 thru 29-0199)

NOSE GEAR STEERING

Nose gear steering system consists of a steering horn on nose gear leg linked to the rudder pedals by push-pull tubes and bellcranks. Gear retraction automatically disengages steering mechanism from nose wheel and centers nose wheel for entry into wheelwell.

TAXIING AND GROUND HANDLING

The aircraft can be easily taxied with minimum use of brakes. Minimum turning radius is 40 ft. (12.0 m) right & 48 ft. (14.4 m) left, without use of brakes. A MANUAL tow bar is provided to ground handle aircraft. Care must be used to not swivel nose wheel beyond 13° right or 11° left from center. Adjustable steering stops are incorporated on nose gear leg assembly.

~ CAUTION ~
Exceeding steering swivel angle limits may cause structural damage.

CONSTRUCTION

Landing gear legs are constructed of chrome-molybdenum tubular steel, heat-treated for greater strength and wear resistance. Main gear leg attaching points pivot in bearing surfaces on forward and stub spars. The nose gear mounts on cabin tubular steel frame and engine mount. Rubber discs in all gear leg assemblies absorb shock of taxiing and landing.

RETRACTION SYSTEM

Landing gear is electrically retracted and extended. The landing gear switch operates a landing gear actuator relay. Pull wheel-shaped knob out and move it to upper detent to raise landing gear. However, an Airspeed Safety Switch, located on left fuselage side adjacent to the pilot’s left knee and connected to the airspeed indicator, is incorporated into the electrical system to prevent landing gear retraction while on the ground and until a safe takeoff speed (approximately 60 +/- 5 KTS) is reached. A properly rigged up-limit switch will stop landing gear in its retracted position. Move control knob to its lower detent to lower landing gear. A properly rigged down-limit switch will stop landing gear actuating motor when proper force has been exerted to hold landing gear in the down-and-locked position. Bungee springs preload retraction mechanism in an overcenter position to assist in holding landing gear down. A landing gear safety by-pass switch override is provided, next to the gear switch, should landing gear fail to retract. Depress and hold this switch to manually bypass airspeed safety switch and allow landing gear to retract.
Never rely on airspeed safety switch to keep landing gear down during taxi, takeoff or landing. Always make certain that landing gear switch is in down position during these operations.

WHEEL BRAKES

Main gear wheels incorporate self-adjusting, disc-type, dual puck, hydraulic brakes. The pilot’s rudder pedals have individual toe-actuated brake cylinders linked to the rudder pedals. Depressing both toe pedals and pulling parking brake control, on console, sets the brakes. Push parking brake control forward to release brakes.

It is not advisable to set parking brake when brakes are overheated, after heavy braking or when outside temperatures are unusually high. Trapped hydraulic fluid may expand with heat and damage the system. Wheel chocks and tiedowns should be used for long-term parking.

EMERGENCY EXTENSION SYSTEM

A manual, emergency gear extension mechanism is provided to allow emergency lowering of landing gear. The control mechanism is located between and aft of pilot and co-pilot seats. The RED lever must be released and pulled up (rotated aft) to engage the manual emergency extension mechanism. The mechanism has a spring retracted pull cable which manually drives the gear actuator to extend landing gear. 12-20 pulls are required to fully extend and lock landing gear down. The electrical extension or retraction system will not operate if the manual extension lever is not properly positioned down.

WARNING SYSTEM

The landing gear warning system consists of: 1) landing gear condition lights, GREEN for “GEAR DOWN” and RED for “GEAR UNSAFE”, and 2) a warning horn, activated when landing gear is not down-and-locked and throttle is approximately 1/4 inch from idle position. The green light shows continuously when landing gear is fully extended. The red light shows whenever landing gear is in transit or not locked down but is OFF when landing gear is fully retracted. A visual gear-position indicator, located on floorboard, aft of the fuel selector, shows that landing gear is down when indicator marks align. The gear down light is dimmed when navigation lights are turned on.

STEERING

Rudder pedal action steers the nose wheel. Gear retraction relieves the rudder control system of its nose wheel steering and centers wheel to permit retraction into the nose wheel well. Minimum turning radius on the ground is 40 feet (12.0 m) to the right and 48 feet (14.4 m) to the left. Adjustable steering stops have been incorporated on nose gear leg assembly.

The nose wheel must not be swiveled beyond 11° left or 13° right of center. To exceed these limits may cause structural damage.

BAGGAGE COMPARTMENT

The baggage compartment is located aft of rear passenger seats. The standard compartment has 20.9 cubic feet (.59 cu.m.) of baggage or cargo space. A maximum of 120 pounds (54 Kg) may be loaded in this area. There are floor tiedown straps provided. Passengers should not be allowed to occupy this space.

Additional cargo space is available by removing rear seat, bottom cushion and seat back cushion/cover (fold seat back forward and slide seat cover up and OFF frame. Store cushions as desired).

To fold rear seat back down, pull lock pin (left side frame). Pull seat frame from pivot rods. Place pivot rods into portion of seat frame that carpet is attached to. Slide frame down until approximately bottomed out. Pull seat back release handle UP to move catch down. Pivot seat back forward & down into seat cushion cavity.

Both rear seats can be folded down together or independent of each other. The storage area located aft of the top of the aft baggage compartment bulkhead (hat rack) is restricted to 10 pounds (4.5 Kg).
CARGO RESTRAINT

Cargo tiedown rings/clevis pins are to be inserted into holes provided in web of front seat rails. The cargo belts attach to these rings and to standard seat belt harness to retain cargo. Refer to Figure 7-4 for typical restraint.

---

CAUTION

Proper loading and retention of cargo is mandatory. See Loading Computation Graph, SECTION VI.

SEATS

The front seats are individually mounted and may be adjusted fore and aft to fit individual comfort preferences. The front seat back may be adjusted by turning left side hand crank (knob) until seat back is in desired position.

Both optional front seat configurations allow vertical seat height adjustment by turning right side hand crank to raise or lower the entire seat assembly.

The rear seat backs have four (4) adjustment positions. Each seat can be adjusted independent of the other by pulling up on respective release handle located on left or right of aircraft center line on forward spar. This allows adjustments from approximately 10° to 40° recline position.

SEAT BELTS/SAFETY HARNESS

Safety restraints, if worn properly, (1 occupant per restraint) keep occupants firmly in their seats during T/O, landing, turbulent air and during maneuvers. The belts/harnesses are mechanically simple and comfortable to wear. The front seat inertia belts/harnesses are attached to hardpoints on side structure and seats. The rear seat belts are attached to brackets firmly mounted to structural hardpoints. Shoulder harnesses are provided for rear seat occupants. Safety belts/harnesses MUST be fastened for take-off and landing operations. It is recommended that all infants and small children below 40 lbs. weight and/or under 40 in. height be restrained in an approved child restraint system appropriate to their height and weight.

The single diagonal type safety harness is designed so the chest strap crosses diagonally from the outboard shoulder to an attachment point as low on the inboard hip as possible. Rear seat occupants should take care to conform with this procedure in adjusting chest strap and inboard belt length. This diagonal configuration places body center-of-gravity inside the triangle formed by chest strap and lap belt. The lap belt should be adjusted comfortably tight. As a result, the body is restricted from rolling out to...

Figure 7-4 CARGO RETENTION (TYPICAL)

Figure 7-5 INERTIAL REEL/HARNESS RETENTION
SECTION VII
AIRPLANE AND SYSTEM DESCRIPTION

MOONEY M20R

ward the unrestricted shoulder or "open" side of the harness, upon forward impact. Refer to Figure 7-5 for proper seat belt/harness adjustment.

CABIN DOOR

Access into cabin is provided by a door located on right side of fuselage. This door has inside and outside operating handles. Outside door handle can be locked with a key specifically provided for it. The door has two latching mechanisms, one located at the top of door and one at the aft, center of door. Should the door come open in flight, flying qualities of the aircraft will not be affected. Procedures for closing door in flight are contained in SECTION III.

PILOT'S WINDOW

A pilot's storm window is located in the left main cabin window. This window is generally used for fresh air for prolonged ground operations or as required during adverse weather conditions. The window should not be opened in flight above 132 KIAS.

EMERGENCY EXITS

The CABIN DOOR is the primary emergency exit from the cabin. If a situation exists where a probable off airport landing will occur, the door should be unlatched to prevent jamming during landing.

The BAGGAGE compartment access DOOR can be used as an auxiliary exit. The door can be opened from the inside even though locked. To open, pull off small ABS cover, pull out latch pin and pull Red Handle. To verify re-engagement of latching mechanism; open outside handle fully, close inside handle to engage pin into cam slide of latch mechanism; insert latch pin into shaft hole to hold Red Handle down. Replace ABS cover. Operate outside handle in normal method.

ENGINE

The engine installed is a Teledyne Continental Motors IO 550-G( * ), normally aspirated fuel injected engine. The following designation describes engine:

I Denotes "FUEL INJECTED"
O Denotes "OPPOSED" (refers to the horizontally opposed cylinders)
550 Denotes piston displacement in "CUBIC INCHES"
G( * ) Denotes a specific equipment configuration

* Refer to TCDS for engine configuration required.

The engine operates with three, standard engine controls. The propeller turns clockwise as viewed from the cockpit.

ENGINE CONTROLS

The engine controls are centrally located between the pilot and co-pilot on the engine control console. The BLACK throttle knob regulates manifold pressure; push the knob forward to increase the setting; pull the knob aft to decrease the setting. A vernier throttle control is optional.

The propeller control, with its crowned BLUE knob, controls engine RPM through the propeller governor. Push the knob forward to increase engine RPM; pull the knob aft to decrease RPM.

The mixture control, with its RED fluted knob, establishes the fuel-air ratio (mixture). Push the knob full forward to set the mixture to full-rich, pull the knob gradually aft to lean the mixture. Pull the knob to its maximum aft travel position to close the idle cut-off valve to completely shut down the engine. Precise mixture settings can be established by observing the EGT gauge on the pilot's instrument panel while adjusting the mixture control.

The optional throttle, propeller and mixture controls are vernier type and fine adjustment can be made by turning knobs clockwise or counter-clockwise. The vernier controls should be rigged within .03 to .05 in. from panel nut face. Rapid movement or large adjustments can be made by pushing button on end of control and positioning control where desired. The non-vernier throttle has an integral friction device.

7 - 18 REV. G ISSUED 6 - 94
be made by pushing button on end of control and positioning control where desired. The non-vernier throttle has an integral friction device.

**ENGINE INSTRUMENTS**

Engine instruments operate electrically, except manifold pressure, through variations in resistance caused by pressure or temperature changes or by variations in current output caused by varying engine RPM or alternator output. The tachometer receives its signal from the Hall effect sensor in magneto.

Engine operating instruments are located in the center of the instrument panel. Colored arcs on instrument faces mark operating ranges. Proper interpretation of engine instrument readings is essential for selecting optimum control settings and for maintaining maximum cruise fuel economy. (Refer to SECTION II for Limitations).

**ENGINE OPERATION AND CARE**

Life of an engine is determined by the care it receives. Maximum efficiency and engine service life can be expected when a good maintenance program is followed. Poor maintenance results in faulty engine performance and reduced service life. Efficient engine operation demands careful attention to cleanliness of air, fuel, oil and maintaining operating temperatures within required limits. Servicing of the engine should be accomplished only by qualified personnel. The minimum grade of fuel for this engine is 100 LL or 100 octane aviation gasoline. If the grade required is not available, use a higher rated fuel; never use a lower rated fuel. Operational procedures for adverse environmental conditions can be found in engine maintenance and operator's manual.

**OIL SYSTEM**

The engine has a full-pressure, wet sump oil system with an 8 quart (7.57 liters) capacity. A conventional dip stick is provided for determining oil quantity. The oil system is depicted in Figure 7-6. The propeller governor boosts engine oil pressure for operation of the propeller. It controls oil pressure going to the propeller hub to maintain or change propeller blade angles. This oil flows through propeller shaft to reach the propeller.

**LUBRICATION SYSTEM**

---

**FIGURE 7-6 OIL SYSTEM SCHEMATIC**
BREATHER FOR CRANKCASE
The crankcase is vented overboard to a near static location.

IGNITION SYSTEM

Power from the engine crankshaft is transmitted through camshaft gear to the magneto drive gears, which in turn drives the magneto drive couplings. The left magneto incorporates an impulse coupling. As the rubber bushings in the drive gear turns the coupling drive lugs, counter-weighted latch pawls inside the coupling cover, engage pins on the magneto case and hold back the latch plate until forced inward by the coupling cover. When the latch plate is released, the coupling spring spins the magneto shaft through its neutral position and the breaker opens to produce a high voltage surge in the secondary coil. The spring action permits the latch plate, magnet and breaker to be delayed through a lag angle of 30 degrees of drive gear rotation during the engine cranking period. Two lobes on the breaker cam produce two sparks per revolution of the drive shaft. After engine is running, counter-weights hold the latch pawls away from the stop pins and the magneto shaft is driven at full advance.

The engine firing order is 1-6-3-2-5-4. Ignition harnesses are connected to the magnetos so right magneto fires the upper plugs on the right side and lower plugs on the left. The left magneto fires the upper plugs on the left and lower plugs on the right. The magneto cases, spark plugs, harnesses and connections are shielded to prevent radio interference.

AIR INDUCTION SYSTEM

The engine air induction system consists of a NACA, flush-type air inlet duct located on front of lower cowl. The air inlet duct incorporates the air filter housing. This housing contains a throw-away, paper canister type air filter element.

A secondary or alternate air source for combustion air is provided. This air inlet has a spring loaded door which normally remains closed. If the air filter or induction air inlet should become restricted, the alternate air door will automatically open. Warmer air will then be drawn from the engine compartment. There will be a reduction of engine power when the alternate air door is open due to lower inlet air pressure and higher air temperature. Whenever the alternate air door is open, a switch will activate the "ALT' AIR" annunciator light on the panel to alert the pilot.

ICING PROTECTION

Continued operation of the induction system in the event of intake air being obstructed is provided by activation of the alternate air system. The alternate air is automatically or manually controlled. When the door is opened, unfiltered, relatively warm air, from engine compartment, is admitted into the induction system.

EXHAUST SYSTEM

The exhaust system consists of tubes from each cylinder mating...
out an exhaust pipe on the left side of aircraft. The left collector pipe crosses through muffler
and out an exhaust pipe on the right side of aircraft. A short tailpipe attaches to the end of each
exhaust pipe.

The muffler has a heat shroud around it which serves as a cabin air heater. Outside ambient air
is forced into the cabin heater by forward velocity. Air flows around the muffler, picking up heat
and is then carried to a cabin heat J-box mounted on the firewall. When cabin heat is not re-
quired, the air continues to flow around the muffler for cooling and is dumped overboard
through the cabin heat J-box outlet duct.

**FUEL INJECTION**

The fuel injection system is of the multi-nozzle, continuous flow type which controls fuel flow to
match engine requirements. Any change in air throttle position, engine speed or a combination
of these causes changes in fuel pressure in direct relation to engine requirements. A manual
mixture control is provided for precise leaning at any altitude and power setting. A fuel flow sys-
tem is installed for digital readout of fuel flow in gallons per hour. However, fuel flow is NOT to
be used as reference for manual leaning. Use the EGT gauge for this purpose.

The continuous-flow system permits the use of a typical rotary vane pump with integral relief
valve. With this system there is no need for an intricate mechanism for timing fuel injection to
the engine. The fuel injector pump is equipped with a separator where vapor is separated by a
swirling augmentor system from the liquid fuel and returned to the tank selected. The fuel injec-
tor pump forces liquid fuel into the metering unit assembly.

The fuel metering unit/air throttle controls the amount of intake air admitted into the intake
manifold and meters the proportionate amount of fuel to the fuel manifold valve. The assembly
has three control units, one for air, in the air throttle assembly, and two for the fuel control unit.

The manifold valve receives fuel from the metering unit. When fuel pressure reaches approxi-
mately 3.5 PSI, a check valve opens and admits fuel to six ports in the manifold valve (one port
for each fuel nozzle line). The manifold valve also serves to provide a clean cutoff of fuel to the
cylinder when engine is shut down.

The injector nozzle lines connect the manifold valve to the six fuel injector nozzles.

The injector nozzles (one per cylinder) are "air bleed" type fuel nozzles which spray fuel directly
into the intake port of the cylinder. When engine is running, flow through the nozzle is contin-
uous and will enter the cylinder combustion chamber when the intake valve opens.

Since the size of the fuel nozzles are fixed, the amount of fuel flowing through them is deter-
mined by the pressure applied. For this reason, fuel flow may be accurately determined by
measuring fuel pressure at the manifold valve.

**ENGINE COOLING AIR**

Ram air is drawn into the forward part of upper cowl and flows down, around the cylinders using
several baffles to control air direction. Hot air, off the cylinders, exits cowl thru lower cowl open-
ings, located on either side of engine lower cowl, immediately forward of the firewall.

**ENGINE STARTING SYSTEM**

Engine starting is provided by a 24 volt starter. A starter engaged warning light (START
POWER) is incorporated as standard equipment in annuciator panel. Ignition is provided by an
impulse coupled magneto.

The engine firing order is 1-6-3-2-5-4. The ignition harnesses are connected to the magneto.
so the right magneto fires the upper plugs on the right side and lower plugs on the left. The left
magneto fires the upper plugs on the left and the lower plugs on the right.

**ACCESSORIES**

**ALTERNATOR**

Standard electrical power is supplied by a gear driven, 28 Volt, 100 ampere alternator.

An optional gear driven, 24 Volt, 20 ampere stand-by alternator is available.
VACUUM PUMP

A full time, engine driven vacuum pump supplies suction for the vacuum-operated gyroscopic flight instruments. Air entering vacuum-powered instruments is filtered; hence, sluggish or erratic operation of vacuum driven instruments may indicate that a clogged vacuum filter is preventing adequate air intake. A vacuum annunciator light is provided to monitor system operation. Refer to Airborne Service Letter No. 31, located in Section X.

One Stand-by Vacuum pump is also driven from the engine accessory case, but is coupled through an electrically actuated clutch. Another Stand-by Vacuum pump system (electric) is installed in the tailcone. The pilot must PUSH a panel mounted rocker switch ON for either Stand-by Vacuum system to be operable.

EXHAUST GAS TEMPERATURE PROBE

The exhaust gas temperature (EGT) probe measures exhaust gas temperature as it exits the exhaust valves into the exhaust manifold. The EGT probe varies electrical current (milliamps), based on exhaust gas temperature, and supplies this to an EGT gauge located on instrument panel. The EGT gauge is used as the primary source to lean fuel mixture.

PROPELLER

The propeller is a three blade, metal, constant speed unit. Propeller rotational speed (RPM) is maintained by a balance of air load, oil pressure and engine rotational forces. The propeller governor regulates a flow of high pressure engine oil to a piston in the propeller dome. The piston is linked by a sliding rod and fork arrangement to propeller blades. Governor oil pressure, acting on a piston and spring, increase propeller blade pitch, thus decreasing propeller and engine RPM. As oil pressure is reduced, centrifugal twisting moments on the propeller blades decrease propeller blade pitch and increase RPM.

In cruise, always use the power setting charts provided in SECTION V.

FUEL SYSTEM

Fuel is carried in two integrally sealed sections of the forward, inboard area of wing. Total usable fuel capacity is 89 U.S. gallons (337 liters). There are sump drains at the lowest point in each tank for taking fuel samples to check for sediment contamination or condensed water accumulation.

The recessed three position fuel selector valve, aft of console, on the floor, allows pilot to set selector valve to LEFT tank, RIGHT tank or OFF position.

The gascolator, located at right of selector valve, in the floorboard, is for draining condensed water and sediment from lowest point in fuel system before first flight of the day and after each refueling. The gascolator sump can be used to drain the selected fuel tank.

![Fuel System Schematic](SMR28-1)

**FIGURE 7-8 FUEL SYSTEM SCHEMATIC**
Fuel is delivered, by the engine driven pump, to a throttle body fuel injector where pressure is regulated and the correct volume of fuel is metered to each cylinder of the engine. Fuel not needed by the engine is returned to the tank from which it is drawn.

An electric Fuel Boost Pump is provided which has the capability of operating engine at partial power in case of engine driven fuel pump failure. The pump is controlled by two switches. The BOOST PUMP switch is to be used for priming engine during normal starting procedures (See SECTION IV) or purging fuel vapor from system when environmental conditions or a heat soaked engine may require it. (See SECTION III). The BOOST PUMP switch connects the pump through a voltage regulator for correct pump output. A guard on the "HIGH BOOST" switch prevents inadvertent operation and must be lifted for switch operation. (See SECTION III). "HIGH BOOST" is to be used when engine driven fuel pump has malfunctioned and will provide sufficient fuel for partial power operation until a precautionary landing can be made to correct malfunction.

Two electric fuel-level transmitters, working in series, in each wing tank operate the appropriate, left or right, fuel quantity gauges. The master switch actuates the fuel quantity indicator system to depict an indication of fuel remaining in each tank. Vents in each fuel tank allow for overflow and pressure equalization. The optional, visual fuel indicators, in each wing, are to be use for PARTIAL FUEL LOADING only and NOT for preflight inspection purpose.

Fuel Flow indicating system (if installed) indicates the volume of fuel being used, total fuel used or fuel remaining or time remaining. Optional fuel flow systems are available and each do not indicate the same type data. The fuel flow memory switch can be shut off if aircraft is to be stored for long periods of time.

**ELECTRICAL SYSTEM**

**ALTERNATOR & BATTERY**

Two 24-volt, 10-ampere-hour storage batteries (in the tailcone) and one 100 ampere self-rectifying alternator (produces 99 amps) supplies electrical power for equipment operation. The No. 1 battery, left side of tailcone, is normally used as the primary to sustain the electrical system and to start the aircraft. The No. 2 battery, right side of tailcone, is normally considered as backup and is kept in a fully charged condition by trickle charge, through a diode system.

Should the No. 1 battery be depleted to the point of being unable to supply adequate power for system needs, it may be de-selected from the system and No. 2 battery selected on line by opening the rocker switch marked BAT-1/BAT-2, on the circuit breaker panel, from the BAT-1 to BAT-2 position. The MASTER switch still controls battery power to the bus from either position. With the BAT-1/BAT-2 switch in the No. 2 position the No. 1 battery will be recharged (trickle charged) through the diode system. Alternate between #1 & #2 batteries, as desired, to keep both active.

A standard Ammeter which has a "PUSH for Volts" button depicts battery charge or discharge.

**SCHEMATIC** (See FIGURE 7-9)

The voltage regulator adjusts alternator output to current load while maintaining a constant voltage level. A voltage warning light illuminates steadily when voltage limits are exceeded (i.e. voltage spikes) and flashes when the voltage is low.

**CIRCUIT BREAKER PANEL** (See FIGURE 7-10)

(Illustration depicts typical C/B panel; may vary from your aircraft)

Push-pull or rocker switch-circuit breakers automatically break the electrical current flow if the system or unit receives an overload to prevent damage to electrical wiring. The main circuit breaker panel is in the extreme right panel. Figure 7-10 illustrates a typical main circuit breaker panel with its push-pull circuit breakers. Rocker switch-circuit breakers are at the bottom and left of the pilot's flight panel.

The alternator's push-pull circuit breaker, on the main breaker panel, furnish an emergency overload used as a break between the alternators and the power buss. Since the alternator is incapable of output in excess of circuit breaker capacity, a tripped breaker normally indicates a fault within the alternator.

The alternator field has a push-pull circuit breaker to furnish an emergency break in the alternator field excitation circuit in the event of alternator or voltage regulator malfunction. If regulator
output voltage exceeds limits, the overvoltage warning light illuminates steadily and the alternator field circuit breaker trips.

Resetting the alternator field circuit breaker should reset alternator. If the circuit breaker will not reset, continue flight with minimum electrical load. The flight will be continued using only battery power, caution is advised to not drain both batteries if electrical power will be required before you are able to land. Land when practical to correct the malfunction.
NOTE
The circuit breakers installed in the panel may vary depending on installed equipment.

ANNUNCIATOR PANEL
The landing gear, low fuel, speed brakes, alternate air, propeller de-ice and pitot heat lights are grouped in the upper annunciator panel. The vacuum malfunction, alternator fail, start power, stand-by vacuum, remote RNAV are grouped in the lower annunciator panel.

A test and dim switch are also found in the panel; each of the lights and switches are discussed elsewhere in this Section.

ELT PANEL
The ELT Panel houses the remote ELT Switch and provides room for other switches as required for optional avionics installations. (See SECTION IX for Avionics Systems installed in this aircraft).

INSTRUMENT & PLACARD LIGHTS
All placards are floodlighted by lights from the glareshield. There are two rheostat knobs on the right hand radio panel. The left control regulates intensity of the placard lighting. The right control provides avionics and instrument lighting. Rotating the knobs clockwise turns ON and increases light intensity.

MAP LIGHT
The map light switch is located on the center of the pilot's and co-pilot's control wheel.

CABIN LIGHTING
Two sets of overhead lights illuminate the cabin.

~ CAUTION ~
All passenger overhead lights are controlled by a Master Light switch located on the pilot's arm rest. With Master Light Switch ON, individual overhead cabin lights are controlled by rocker switches located on each passenger's arm rest (excluding front seat passenger). Front seat passenger's light switch is located forward of cabin door hinge on side panel.

EXTERIOR LIGHTING
Conventional navigation and high intensity strobe lights are installed on the wing tips and on the rudder trailing edge (strobe light only). Landing and Taxi lights are installed in the right and left wing leading edge. Split switches are used to control either the left or right taxi or landing lights. All exterior light switches are located on overhead panel just behind top of windshield.
The high intensity wing tip and tail strobe lights are required for night operation but should be turned OFF when taxiing near other aircraft or flying in fog or clouds. The conventional position lights must be used for all night operations.

**CABIN ENVIRONMENT**

**HEATING & VENTILATION SYSTEMS**

Four ventilating systems provide cabin environmental conditions which can be controlled to pilot and passenger individual preferences:

**FRESH AIR** - One source of outside air enters cabin through air ducts on both sides of fuselage. This outside air is always available through adjustable outlets (Wemac) near pilot's and co-pilot's knees.

**CABIN VENT** - When the CABIN VENT control is pulled, fresh air from air duct on fuselage right side is supplied to the cabin (through mixer box and lower console duct) and/or to the defrost system.

**CABIN HEAT** - Fresh air, heated by engine exhaust muff, and cool air from air duct on co-pilot side can be individually controlled and mixed to desired temperature by use of the Cabin Vent and Cabin Heat controls. Pulling cabin heat control supplies heat to cabin and defroster system. Hot and cold air may be mixed by adjusting both heat and vent controls. These controls may be adjusted anywhere between full open and full closed.

**OVERHEAD VENTILATION** - Cabin overhead ventilating system works independently of cabin heating and ventilating system. Fresh air enters a NACA duct on dorsal fin and is controlled by individual outlets above and between each seat. A master air vent control regulates flow of air through the individual overhead outlets. This control is located between the pilots & co-pilots seat on the overhead panel.

**WINDSHIELD DEFROSTING SYSTEM**

The windshield defrost system takes air from the cabin air distribution system and distributes this over the windshield interior surface any time the heat and/or fresh air valves are open. Pulling the defrost control Full AFT decreases flow to the cabin, turns defroster blower ON and forces maximum air to flow through the defrost ducts.

**PITOT PRESSURE & STATIC SYSTEM**

A pitot tube, mounted on lower surface of the left wing, picks up ram air for airspeed indicator. A pitot heater prevents pitot tube icing when flying in moisture-laden air. A pitot system drain valve is located on the forward bottom skin of the left wing to fuselage fillet. Static ports on each side of the tailcone supply static air pressure for the altimeter, the airspeed indicator, and vertical speed indicator. A static system drain valve is located on fuselage bottom skin below the left wing.
side, tailcone access door and is used to drain moisture that might collect in static system lines. An alternate static pressure source valve handle is installed in the instrument panel below the pilot's control wheel shaft. Alternate static air is taken from within the cockpit and will affect flight instrument readings. Performance variation charts in SECTION V depict the difference between primary and alternate static indications.

**STALL WARNING SYSTEM**

The electrical stall warning system uses a vane-actuated switch, installed in left wing leading edge, to energize stall warning horn located in the cabin. The stall warning switch is adjusted to provide aural warning at 5 to 10 KIAS before actual stall is reached and will remain on until aircraft flight attitude is changed toward a non-stalled condition.

**NOTE**

Do not attempt to adjust prestall warning speed by bending the vane. This part has been heat treated and cannot be bent without damaging or breaking the vane.

**OXYGEN SYSTEM**

An optional four-place oxygen system provides supplementary oxygen necessary for continuous flight at high altitude. An oxygen cylinder is located in the equipment bay, accessible through a removable panel on the aft wall of the baggage compartment, or through the standard external, right side, panel in the tailcone. A combined pressure regulator/shutoff valve, attached to the cylinder, automatically reduces cylinder pressure to the delivery pressure required for operating altitude. The oxygen cylinder filler valve is located under a springloaded door aft of the baggage door.

A pilot's oxygen panel contains a cylinder pressure gauge, on the pilot's arm rest, effectively a quantity gauge, and a control knob, below arm rest, which is mechanically connected to the shutoff valve at the cylinder. The supply of oxygen can thus be shut off from the cockpit when not required. When the control is in the "ON" position, sufficient oxygen flow is available at the maximum airplane operating altitude (see Section II Limitations) while at lower altitudes the reducing valve automatically economizes the flow to conserve oxygen for longer duration or for future availability, without requiring any action by the pilot. (See Fig. 7-13)

Four oxygen outlets are provided in the overhead panel between the pilot's and co-pilot's seat for the convenience of all occupants. Oxygen flows from the outlets only when a mask hose is connected. Four partial re-breathing type masks are provided, each with vinyl plastic hoses and flow indicators. The three passenger masks are of the disposable type. The pilot's mask is a permanent type with a built-in microphone for ease of radio communication while using oxygen. To use the mask-microphone, connect its lead to the microphone jack located left of the instrument panel, in place of the aircraft or headset microphone lead, and key the switch on the control yoke.

The oxygen cylinder, (composite) when fully charged, contains 115.7 ft.³ of aviator's breathing oxygen (Spec No. MIL-0-27210) under a pressure of 1850 PSI at 21° C (70° F). Filling pressures will vary, however, due to ambient temperature in filling area, and the rise of temperature resulting from compression of the oxygen. Because of this, merely filling to 1850 PSI will not necessarily result in a properly filled cylinder. Fill to pressures indicated on Fig. 7-12 for ambient temperatures.

// WARNING //

Oil, grease or other lubricants in contact with oxygen create a serious fire hazard, and such contact must be avoided when handling oxygen equipment.
**Ambient Temperature F** | **Filling Pressure PSIG** | **Ambient Temperature F** | **Filling Pressure PSIG**
---|---|---|---
0 | 1650 | 50 | 1875
10 | 1700 | 60 | 1925
20 | 1725 | 70 | 1975
30 | 1775 | 80 | 2000
40 | 1825 | 90 | 2050

**FIGURE 7-12 - OXYGEN FILLING PRESSURES**

**NOTE**

The oxygen cylinder should not be run down to less than 100 PSI. Below this pressure, atmospheric contamination of the cylinder may occur, requiring valve removal and cylinder cleaning and inspection at an FAA approved repair station.

For FAA requirements concerning supplemental oxygen, refer to FAR 91.32. Supplemental oxygen should be used by all occupants when cruising above 12,500 feet. It is often advisable to use oxygen at altitudes lower than 12,500 feet under conditions of night flying, fatigue, or periods of physiological or emotional disturbances. Also the habitual and excessive use of tobacco or alcohol will usually necessitate the use of oxygen at less than 10,000 feet.

The oxygen duration chart (Fig. 7-13) should be used in determining the usable duration (in hours) of the oxygen supply in the airplane for the chosen cruising altitude. The following procedure outlines the method of finding the duration from the chart:

1. Note the available oxygen pressure shown on the pressure gage.

2. Locate this pressure on the scale on the left side of the chart. Then go across the chart horizontally to the right until intersecting the diagonal line which represents the number of persons on board. From that intersection drop vertically down to the heavy line, marked 30,000 ft.

3. From this point on the heavy line, follow the trend of the curved lines, down to the horizontal line representing cruise altitude. Then drop vertically down to the bottom of the chart and read the duration in hours given on the scale.

4. As an example of the above procedure, 1400 PSI of pressure will safely sustain the pilot and one passenger for 4 hours and 55 minutes (Fig. 7-13) at 28,000 ft; however, cruising at 20,000 ft. would permit an oxygen duration of 7 hours and 55 minutes (Fig. 7-13). Light crew loads and relatively low altitudes will permit oxygen durations off the chart. Such durations can be calculated by determining the duration at 30,000 feet (by steps 1 and 2 above) and multiplying by the "duration multiplier" shown on the right of the appropriate cruising altitude. Example, Pilot only, at 1600 PSI has 11.25 hours duration at 30,000 ft. Duration Multiplier of 2.4 for 20,000 ft. gives 26 hours and 54 minutes duration. Oxygen durations off the chart obviously exceed the airplanes duration. However, judicious choices of altitude for the number of persons on board can permit flight planning for several fuel stops, without need for recharging oxygen system at each stop.

**CAUTION**

Facial hair, beards & mustaches may prevent a proper seal between face and mask, causing 16 - 67% leakage. Duration chart may be invalid.

---

7 - 28 REV. G ISSUED 6 - 94
The standard vacuum system on the M20R consists of a main vacuum pump, regulator, filters and a clutch activated, engine driven, stand-by vacuum pump. The main vacuum pump operates when engine is running. The standard stand-by vacuum pump is coupled to the engine accessory drive but the electrically activated clutch must be turned ON by pushing the STBY VAC switch, before the pump is on line. An optional Stand-by Vacuum Pump System is located in the tailcone when the optional, No. 2 alternator is installed.
A vacuum system malfunction is shown to the pilot by a RED, HI/LO VAC annunciator light. A FLASHING annunciator light indicates LOW VACUUM and a STEADY light indicates HIGH VACUUM. In either case, vacuum operated instruments are to be considered UNRELIABLE and use of stand-by vacuum pump is recommended. The STBY VAC legend on the annunciator will be illuminated when the STBY VAC switch is ON.

**EMERGENCY LOCATOR TRANSMITTER**

The Emergency Locator Transmitter (ELT) is located in the tailcone and is accessible from the battery access door on the right side of the tailcone. The emergency locator transmitter meets the requirements of FAR 91.52 and is automatically activated by a longitudinal force of 5 to 7 g's. The ELT transmits a distress signal on both 121.5 MHz and 243.0 MHz for a period of from 48 hours in low temperature areas and up to 100 hours in high temperature areas. The unit operates on a self-contained battery. The battery should be checked at each annual inspection. The battery has a useful life of four years. However, to comply with FAA regulations it must be replaced after two years of shelf life. The battery should also be replaced if the transmitter has been used in an emergency situation or if accumulated test time exceeds one hour. The battery replacement date is marked on the transmitter label.

On the unit itself is a three position selector switch placarded “ARM”, “OFF”, “ON”. The “ARM” position is provided to set the unit to the automatic position so that it will transmit only after impact and will continue to transmit until battery is drained to depletion or until the switch is manually moved to “OFF”. “ARM” position is selected when the transmitter is installed at the factory and switch should remain in that position whenever unit is installed in the airplane. The “OFF” position is provided so unit can be used as a portable transmitter or in the event the automatic feature was not triggered by impact or to periodically test the function of the transmitter.

Select the "OFF" position when changing battery, when rearming the unit if it has been activated for any reason, or to discontinue transmission.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
</table>

If the switch has been placed in the "ON" position for any reason, the "OFF" position has to be selected before selecting "ARM". If "ARM" is selected directly from the "ON" position the unit will continue to transmit in the "ARM" position.

**E.L.T. REMOTE SWITCH OPERATION**

A pilot's remote ELT switch, located at the top of right hand radio panel, is provided to allow transmitter to be controlled from inside cabin. The pilot's remote switch is placarded "ON", & "ARM". The unit will start transmitting with switch in "ON" position and will stop when remote switch is returned to "ARM" position during cockpit checkout.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
</table>

If for any reason a test transmission is necessary, the operator must first obtain permission from a local FAA or FCC representative (or other applicable Authority) or in accordance with current regulations. Test transmission should be kept to a minimal duration. Testing of ELT should be conducted only during the first five (5) minutes after any hour and no longer than three (3) audible sweeps.

The ELT should be checked during the ground check to make certain the unit has not been accidentally activated. Check by tuning a radio receiver to 121.5 MHz. If there is an oscillating/warbling sound, the locator may have been activated and should be turned off immediately. Reset to "ARM" position and check again to insure against outside interference.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>8-2</td>
</tr>
<tr>
<td>GROUND HANDLING</td>
<td>8-3</td>
</tr>
<tr>
<td>TOWING</td>
<td>8-3</td>
</tr>
<tr>
<td>TIEDOWN</td>
<td>8-3</td>
</tr>
<tr>
<td>JACKING</td>
<td>8-3</td>
</tr>
<tr>
<td>SERVICING</td>
<td>8-4</td>
</tr>
<tr>
<td>REFUELING</td>
<td>8-4</td>
</tr>
<tr>
<td>ENGINE LUBRICATION</td>
<td>8-4</td>
</tr>
<tr>
<td>INDUCTION AIR FILTER</td>
<td>8-5</td>
</tr>
<tr>
<td>GEAR AND TIRES</td>
<td>8-6</td>
</tr>
<tr>
<td>BATTERIES</td>
<td>8-6</td>
</tr>
<tr>
<td>HYDRAULIC BRAKE RESERVOIR SYSTEM.</td>
<td>8-7</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>8-7</td>
</tr>
<tr>
<td>ENGINE PERFORMANCE CHECKS</td>
<td>8-7</td>
</tr>
<tr>
<td>PROPELLER CARE</td>
<td>8-7</td>
</tr>
<tr>
<td>EXTERIOR CARE</td>
<td>8-7</td>
</tr>
<tr>
<td>INTERIOR CARE</td>
<td>8-8</td>
</tr>
<tr>
<td>AIRPLANE FILE</td>
<td>8-8</td>
</tr>
</tbody>
</table>
This section contains factory recommended procedures for proper ground handling, routine care and servicing of your Mooney.

It is recommended that all aircraft undergo a complete inspection (ANNUAL) each twelve calendar months. In addition to the recommended ANNUAL inspection aircraft operated commercially (for hire) should have a complete inspection every 100 hours of operation. All inspections must be performed by a designated representative of the FAA or the Aviation Authority of the country in which the aircraft is licensed.

The FAA may require other inspections by the issuance of airworthiness directives applicable to the airplane, engine, propeller and other components. It is the responsibility of the owner/operator to ensure compliance with all applicable Airworthiness Directives and recommended “MANDATORY” Mooney Aircraft Service Bulletins/Instructions. When inspections are repetitive the owner/operator should take appropriate steps to prevent inadvertent non-compliance.

Scheduling of ALL maintenance is the responsibility of the aircraft operator. A general knowledge of the aircraft is necessary to perform day-to-day service procedures and to determine when non-routine or unusual service or shop maintenance is needed.

Service information in this section of the manual is limited to service procedures which the operator will normally perform or supervise. Reference should be made to FAR Part 43 for information regarding preventive maintenance which may be performed by a U.S. licensed pilot.

It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered in your locality.

Keep in touch with your Mooney Service Center and take advantage of his knowledge and experience. He knows your airplane and how to maintain it. Should an extraordinary or difficult problem arise concerning the repair or upkeep of your Mooney, consult the Product Support Department, Mooney Aircraft Corporation, Louis Schreiner Field, Kerrville, TX. 78028. Telephone: Area Code (830)-996-6000 (ext. 2092) or (830) 792-2092.

All correspondence regarding your airplane should include the aircraft MODEL and SERIAL NUMBER. These numbers can be found on an identification plate located on the lower aft portion of the left side of the tailcone. The aircraft Model and Serial Number must also be used when consulting either the Service & Maintenance Manual or Illustrated Parts Catalog.

Service & Maintenance, Illustrated Parts and Service Bulletin/Service Instruction Manuals for your airframe and systems (excluding Avionics & Navigation) may be obtained from your Mooney Service Center.

Avionics and Navigation Systems information should be obtained from the applicable manufacturers.

Engine information should be obtained from Teledyne Continental Motors, P.O. Box 90, Mobile, AL 36601, USA, Telephone, (205) 438-3411.
**GROUND HANDLING**

**TOWING**

For maneuvering the aircraft in close quarters, in the hangar, or on the ramp, use the manual tow bar furnished with the aircraft loose equipment. The towbar attaches to the nose gear crossbar. One man can move the aircraft providing the ground surface is relatively smooth and the tires are properly inflated.

When no towbar is available, or when assistance in moving the aircraft is required, push by hand:

1. on wing leading edges
2. on inboard portion of propeller blades adjacent to propeller hub.

Towing by tractor or other powered equipment is NOT RECOMMENDED.

~~~

CAUTION

~~~

Exercise care not to turn the nose wheel past its normal swivel angle of 11° Left or 13° Right of center. Exceeding the turn limits shown on the turn indicator may cause structural damage.

**TIEDOWN**

As a precaution against wind damage, always tie down the aircraft when parked outside. Removable wing tiedown eye-bolts, supplied with the loose equipment, screw into wing receptacles marked HOIST POINT just outboard of each main gear. Replace these eyebolts with jack point fixtures when it is necessary to lift the aircraft with jacks. The tail tiedown point is part of the tail skid.

**TO TIE DOWN AIRCRAFT:**

a. Park the airplane facing the wind.
b. Fasten the co-pilot seat belt through the flight control wheel. Pull seat belt snug so flight controls are immobilized.
c. Fasten strong ground-anchored chain or rope to the installed wing tiedown eyebolts, and place wheel chocks fore and aft of each wheel.
d. Fasten a strong ground-anchored chain or rope through the tail skid.

**JACKING**

When it is necessary to raise the aircraft off the ground:

a. Install jack points in tiedown mounting holes outboard of each main gear.
b. Use standard aircraft jacks at both wing hoist points (wing tiedown eyebolt receptacles) outboard of the main gears. While holding jack point in place, raise jack to firmly contact jack point.
c. Place a jack under front jack point (Sta. – 5.51) to lift nose wheel.
d. Raise aircraft, keeping wings as nearly level as possible.
e. Secure safety locks on each jack.

~~~

CAUTION

~~~

Do not raise the aircraft on jacks out of doors when wind velocity is over 8 KTS. When lowering aircraft on jacks, bleed off pressure on all jacks simultaneously and evenly to keep aircraft level as it is lowered.

**NOTE**

Individual wheels may be raised without raising entire aircraft. Wheels not being raised should be chocked fore and aft.
REFUELING

Integrally sealed tanks, in forward, inboard sections of wing (LH & RH), carry the standard fuel quantity. With aircraft positioned on level ground, service each fuel tank after flight with 100 octane or 100LL aviation grade gasoline. The fuel tank is considered full when fuel completely covers bottom of standpipe.

The optional, visual fuel quantity indicators on top of each wing tank should be used as a reference for partial refueling only. These gauges will not indicate the tank’s total capacity above 30 gallons of fuel.

Before filling fuel tanks, when planning a maximum weight flight configuration, consult the Weight & Balance Record (SECTION VI) for loading data.

~ CAUTION ~
~ ~ ~ ~ ~ ~

Never use aviation fuel of a lower grade than 100 octane or 100 LL avgas.

Fuel samples from the sump drain of each tank should always be taken before the first flight of the day to check for water, sediment or other contamination. It is recommended that fuel samples be taken prior to each flight. Fuel samples taken immediately after refueling may not show water or sediment due to mixing action of refueling process.

//WARNING//

Allow five minutes after refueling for water and sediment to settle in tank and fuel drain valve before taking fuel samples or draining gascolator.

Tank sump drains are near each wing root, forward of the wheel wells. A small plastic cup is supplied as loose equipment for obtaining fuel samples. To collect a fuel sample, insert cup actuator prong into sump drain receptacle; push upward to open valve momentarily and drain fuel into cup. If water is in fuel, a distinct line separating water from gasoline will be seen through transparent cup wall. Water, being heavier, will settle to bottom of cup, while colored fuel will remain on top. Continue taking fuel samples until all water is purged from tank. Aircraft should be in a level position to prevent the possibility of any contamination not being at sump drain area.

The fuel system gascolator is on the cabin floor, forward of co-pilot’s seat. To flush system and lines leading from wing tanks to selector valve, turn selector handle to the left tank position and pull fuel drain valve for about five seconds. Repeat procedure for right tank. Be sure fuel drain valve is returned to closed position and drain valve is not leaking.

~ ~ ~ ~ ~ ~

Use recommended engine break-in procedures as published by engine manufacturer.

ENGINE LUBRICATION

Operate and service new engine within limitations given in SECTION II and per TCM Maintenance and Operators Manual.

Before every flight, check engine oil level and replenish as necessary.

The oil filler cap access door is located in top cowlimg. Any lubricating oil must conform with TCM Specification MHS24 or MHS25 to be acceptable for use in engine. See TCM Maintenance and Operators Manual for specifically approved products.

New or newly overhauled engines should be operated on aviation grade mineral oil during the first 25 HOURS of operation or until oil consumption has stabilized. The aircraft is delivered from Mooney with multi-viscosity mineral oil. Single viscosity mineral oil may be added to multi-viscosity mineral oil if necessary.
The engine is equipped with an external, full flow, oil filter. Engine oil change intervals are recommended at each 50-HOUR INTERVALS if small capacity oil filter is installed. If large capacity oil filter is installed, the oil change interval may be increased to 100-HOUR INTERVALS provided the oil filter is replaced every 50 hours. The external oil filter element is recommended to be replaced at 50-HOUR INTERVALS in all cases.

~ ~ ~ ~ ~ ~

~ CAUTION ~

~ ~ ~ ~ ~ ~

If an engine has been operating on mineral oil for several hundred hours, a change to additive oil should be undertaken with caution.

If the engine is in an extremely dirty condition, the switch to additive oil should be deferred until after engine has been overhauled. When changing from mineral oil to additive or compounded oil, after several hundred hours of operation on mineral oil, take the following precautionary steps:

a. DO NOT MIX additive oil and mineral oil. Drain mineral oil from engine, change filter and fill with additive oil.

b. DO NOT operate engine longer than FIVE HOURS before again changing oil.

c. Check oil filter for evidence of sludge or plugging. CHANGE oil and REPLACE oil filter element every 10 HOURS if sludge is evident. Resume normal oil drain periods after sludge conditions improve.

Your Mooney Service Center will change engine oil in addition to performing all other service and inspection procedures needed when you bring your airplane in for its 50-hour; 100-hour, or annual inspections.

~ ~ ~ ~ ~ ~

~ CAUTION ~

~ ~ ~ ~ ~ ~

Excessive oil sludge buildup indicates that the oil system needs servicing at less than 50-hour intervals.

When changing or adding oil, the following grades of oil are recommended:

Multi-Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . 15W-50 or 20W-50 *

* Refer to the latest edition of TCM Maintenance and Operators Manual for approved brands of oil.

Mooney Service Center's stock approved brands of lubricating oil and all consumable materials necessary to service your airplane.

INDUCTION AIR FILTER

The importance of keeping the induction air filter clean cannot be over-emphasized. A clean filter promotes fuel economy and longer engine life. The dry-type filter can usually be washed six to eight times before replacement is necessary. Replace the paper induction air filter every 500 HOURS or at ONE YEAR intervals, whichever occurs first.

1. To clean the dry-type induction air filter:

a. Remove engine cowling.

b. Remove filter element.

c. Direct a jet of air from inside of filter out (opposite normal airflow). Cover entire filter area with air jet.

~ ~ ~ ~ ~ ~

~ CAUTION ~

~ ~ ~ ~ ~ ~

Do not use a compressor unit with a nozzle pressure greater than 100 PSI.

d. After cleaning, inspect filter for damage. Discard if filter or gasket is damaged.
SECTION VIII
HANDLING, SERVICE AND MAINTENANCE

NOTE
If filter shows an accumulation of carbon, soot, or oil, continue with cleaning steps e through h.

a. Soak filter in non-sudsing detergent for 15 minutes; then agitate filter back and forth for two to five minutes to free filter element of deposits.

NOTE
A Donaldson D-1400 Filter Cleaner is also recommended. Do not use solvents.

b. Rinse filter element with a stream of clear water until rinse water is clear.

c. Dry filter thoroughly. Do not use a light bulb or air heated above 180° F. for filter drying.

d. Inspect for damage and ruptures by holding light bulb inside filter. If damage is evident, replace filter with a new one.

GEAR & TIRES

The aircraft is equipped with 6-ply, Type III, standard-brand tires and tubes. Keep main gear tires inflated at 42 PSI and the nose tire at 49 PSI for maximum service life. Proper inflation will minimize tire wear and impact damage. Visually inspect tires during preflight for cracks, ruptures and worn spots. Avoid taxi speeds that require heavy braking or fast turns. Keep the gear and exposed gear retraction system components free of mud and ice to prevent retraction interference and binding. It is recommended that retraction/extension cycles (5 minimum) be done any time any tire is replaced to assure that no interference exists during the cycle.

CAUTION
After any landing, other than a smooth touchdown and rollout, when aircraft is above 3200 Lbs (1,452 Kg), the aircraft should undergo the Gear System Operational Inspection as outlined in M20R Service and Maintenance Manual, No. 160, Chapter 32-30-01.

The gear warning horn may be checked in flight by retarding throttle with the gear up. The gear horn should sound with an intermittent note when throttle is positioned 1/4 to 3/8 inch from idle (while gear is up).

BATTERIES

The two 24-volt, 10 ampere-hour electrical storage batteries are located in the tailcone, aft of baggage compartment bulkhead, accessible through left and right side tailcone access panels. Check battery fluid level every 25 FLIGHT HOURS or each 30 DAYS whichever comes first.

To service batteries, remove tailcone access cover(s) to gain access to battery(ies). Check terminals and connectors for corrosion. Add distilled water to each battery cell as necessary. Keep the fluid at one-quarter inch over the separator tops.

Check fluid specific gravity for a reading of 1.265 to 1.275. A recharge is necessary when the specific gravity is 1.240 or lower. Start charging at four amperes and finish at two amperes; do not allow battery temperature to rise above 120° F. during recharging. Keep battery at full charge to prevent freezing in cold weather and to prolong service life.

CAUTION
Alternator and voltage regulator operate only as a one-polarity system. Be sure the polarity is correct when connecting a charger or booster battery.
If corrosion is present, flush battery, shelf and mounting area with a solution of baking soda and water. Do not allow soda to enter battery cells. Keep cable connections clean and tightly fastened and keep overflow line free of obstruction.

**HYDRAULIC BRAKE RESERVOIR SYSTEM**

The brake system hydraulic reservoir is located on the tailcone bulkhead, forward of the avionics components. To service, remove the left side tailcone access panel and check fluid level every 50 HOURS of operation. Fluid level should be no higher than two (2) inches (5 cm) below filler cap. Use only hydraulic fluid (Red) conforming to specification MIL-H-5606. DO NOT FILL reservoir while parking brake is set.

**MAINTENANCE**

**ENGINE PERFORMANCE CHECKS**

When the aircraft leaves the factory the IO-550-G(5) engine has been properly tuned and will perform at optimum efficiency. To insure that the engine is continuing to perform properly certain maintenance action should be performed during the 100 HOUR or ANNUAL inspection or whenever it is suspected that engine performance is not correct.

Refer to M20R SERVICE AND MAINTENANCE MANUAL or TCM maintenance manuals for specific maintenance actions to adjust engine, if necessary.

**PROPELLER CARE**

The high stresses to which propeller blades are subjected makes their careful inspection and maintenance vitally important. Check blades for nicks, cracks or indications of other damage before each flight. Nicks tend to cause high stress concentrations in the blades which, if ignored, may result in cracks. It is very important that all nicks and scratches be repaired prior to flight. It is not unusual for propeller blades to have some end play or fore and aft movement as a result of manufacturing tolerances in the parts. This has no adverse effect on propeller performance or operation. With the first turn, centrifugal force firmly seats the blades, rigidly and positively against the retention bearing in the propeller hub.

Preflight inspection of the propeller blades should include, in addition to the foregoing, an occasional wiping with an cloth soaked in kerosene. NEVER USE AN ALKALINE CLEANER ON THE BLADES.

Your Mooney Service Center will answer any questions you may have concerning blade repair and inspection.

**EXTERIOR CARE**

As with any paint applied to a metal surface, an initial curing period is necessary for developing the desired qualities of durability and appearance. Therefore, DO NOT APPLY WAX TO THE NEW AIRCRAFT EXTERIOR UNTIL TWO OR THREE MONTHS AFTER DELIVERY. Wax substances will seal paint from the air and prevent curing. Wash the exterior to prevent dirt from working into the curing paint. Hold buffing to a minimum until curing is complete and there is no danger of disturbing the undercoat.

```
~ ~ ~ ~ ~ ~
~CAUTION~
~ ~ ~ ~ ~ ~
```

Before washing the exterior, be certain the brake discs are covered, a pitot cover is in place, and all static-air buttons are masked off.

Remove grease or oil from the exterior by wiping with a cotton cloth saturated in kerosene. Flush away loose dirt and mud deposits before washing the exterior with an aircraft-type washing compound mixed in warm water. Use soft cleaning cloths or a chamois, and USE ONLY MILD LIQUID TYPE DETERGENTS, avoid harsh or abrasive detergents that might scratch or corrode the surface. It is essential that ALL CLEANING COMPOUNDS AND APPLICATION CLOTHS BE FREE OF ABRASIVES, GRIT, OR OTHER FOREIGN MATTER. Use a prewash cleaner to remove a heavy oxidation film. For nonoxidized or precleaned surfaces, apply a good exterior finish wax recommended for protection of urethane enamel finishes. Carefully follow the manufacturer's instructions. A heavier coating of wax on the
If fuel, hydraulic fluid or any other dye-containing substance is found on the exterior, wash the area at once to prevent staining. Immediately flush away spilled battery acid and treat the area with a baking soda-and-water solution, followed by thorough washing with a mild aircraft detergent and warm water.

Before wiping windows or windshield, flush exterior with clear water to remove particles of dirt. Household window cleaning compounds should NOT be used; some contain abrasives or solvents which could harm plexiglas. Any commercial anti-static plexiglass cleaner is recommended for cleaning and polishing the windshield and windows.

INTERIOR CARE

Normal household cleaning practices are recommended for routine interior care. Frequently vacuum clean seats, carpets, fabric, side panels and headliner to remove as much surface dust and dirt as possible. For cleaning Izit Leather side panels and wool upper cabin panels, use Woolite, mixed 1 part Woolite to 3 parts water. Other type cleaners are not recommended at this time.

~~~ CAUTION ~~~

Never use benzene, carbon tetrachloride, acetone, or gasoline for cleaning plexiglas or interior panels. Carefully follow the manufacturer's instructions when using commercial cleaning and finishing compounds.

Foam type shampoos may be used for routine cleaning of carpets. To minimize carpet wetting, keep foam type cleaners as dry as possible and gently rub in circles. Use vacuum cleaner to remove foam and dry the materials. Grease spots, on carpet, should be removed with jelly-type spot lifter. Do not saturate carpet with a solution which could damage backing materials.

Use a damp cloth to clean metal surfaces.

AIRPLANE FILE

Certain miscellaneous data, information and licenses are a part of the airplane file. The following is a checklist of documents that must either be carried in the airplane or available on request of the proper authority.

1. To be displayed in the airplane at all times:
 a. Aircraft Airworthiness Certificate (FAA Form 8100-2).
 b. Aircraft Registration Certificate (FAA Form 8050-3).
 c. Aircraft Radio Station License, if transmitter installed (FCC Form 556).

2. To be carried in the airplane during all flight operations:
 b. Weight and Balance, and associated papers (latest copy of the Repair and Alteration Form, FAA Form 337, if applicable).
 c. Equipment List.

NOTE

The original weight and balance data and Equipment List are contained in SECTION VI of this manual. This manual is supplied with each new airplane purchased from Mooney Aircraft Corporation. It is recommended that copies of SECTION VI be made and stored in a safe place.
3. To be made available upon request:
 a. Airplane Log Book.
 b. Engine Log Book.

Since the Regulations of other nations may require other documents and data, owners of airplanes not registered in the United States should check with their own aviation officials to determine their individual requirements.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>9-3</td>
</tr>
</tbody>
</table>

THE SUPPLEMENTS INSERTED INTO THIS SECTION ARE FAA APPROVED

<table>
<thead>
<tr>
<th>SUPPLEMENT INSERTED</th>
<th>DATE</th>
</tr>
</thead>
</table>

ISSUED 6 - 94
This Supplement must be attached to the applicable FAA Approved Pilot's Operating Handbook and Airplane Flight Manual (POH/AFM) when the AA80 InterVOX Intercom System is installed in accordance with Mooney Drawing number 810417 (M20J, M20K), 810202 (M20L, M20M, M20R). The information contained herein supplements or supersedes the basic manual only in those areas listed. For limitations, procedures and performance information not contained in this supplement, consult the basic Airplane Flight Manual.
MOONEY AIRCRAFT CORPORATION

P. O. BOX 72
Kerrville, Texas 78029-0072

LOG OF REVISIONS

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Revision Pages</th>
<th>Description of Revisions</th>
<th>FAA Approved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ALL PAGES</td>
<td>Added M20R to Heading of all pages.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The revised portions of affected pages are indicated by vertical black lines in the margin.
The AA80 Intercom system provides one central control for all aircraft audio, allowing existing radio and entertainment audio to be mixed with live or voice activated Intercom audio. Boom microphone control is also provided for two places (pilot & co-pilot), with pilot’s control having priority. Muting of the entertainment audio is provided during ICS or TX operation. An emergency/isolation mode is also provided for the pilot.

Control over radio receive level (internal), transmit sidetone level (internal), music level (internal), Intercom level (front panel), and VOX threshold (front panel) is provided. The vox threshold or squelch also allow for a “live” mode, by defeating the squelch, and allowing continuous ICS operation.

Operation of the ICS is transparent, allowing transmit during any ICS mode simply by use of the TX PTT switch.

The AA80 Intercom system imposes no limitations on the original airframe or other systems.

The AA80 intercom system does not affect the emergency procedures of the aircraft.

Emergency Operation

If power is lost to the AA80 for any reason, it will drop into the power-fail mode and the pilot will be connected directly to the radios for emergency operation. The external PTT switch will still function. This mode is similar to the “PILOT ISOLATE” mode, except that all co-pilot & passenger functions are lost since they depend on external power. A power failure has occurred when the panel indicator fails to light under any condition.

If a catastrophic relay failure of the AA80 should occur or the rear connector becomes loose or disengaged, the designated emergency hand microphone and headset jacks will allow operation to continue, as they have no connection directly through the AA80.

The “PILOT ISOLATION” mode requires no power and will operate even if other circuitry should fail in the AA80.

NOTE

During this mode the co-pilot’s microphone IS NOT locked out and he could transmit if necessary; however he will NOT BE ABLE TO RECEIVE the incoming audio.

All aspects of emergency operation should be confirmed to be working by the pilot before accepting the aircraft into service. This can be accomplished by pulling the Intercom circuit breaker during the pre-takeoff ground check to turn all power OFF from the AA80 and checking operation per procedures above.
SECTION IV - NORMAL PROCEDURES

SELECTION OF TRANSMIT FUNCTIONS

Keying the external TX PTT switch activates the AA80 for transmit with the pilot's switch having priority in normal or "INTERVOX" mode. Proper TX operation is annunciated by a green light on the front of the AA80.

Sidetone is normally heard from the radio(s) connected to the AA80, but if not available, an internal potentiometer will adjust the level of artificial sidetone generated within the AA80 system for the pilot's convenience.

NOTE
This artificial sidetone is only available through the amplifier in the AA80 and will be lost to the pilot in the "PILOT ISOLATION" mode, but will be heard by the passenger(s).

SELECTION OF RECEIVE FUNCTIONS

Receive audio is always enabled through the AA80 and has a separate internal adjustment to allow balancing of this level to suit the pilot's preference and equalize iso/normal operation.

An additional input is provided for entertainment audio (tapes, etc.) with a separate level adjustment. This line is muted during transmit functions and when the Intercom is active.

If the "ISO" function is selected, the pilot will be connected directly to the radios, while the co-pilot and rear seat passenger(s) remain on the ICS bus with the entertainment audio. In the "INTERVOX" mode all stations hear the same audio.

ICS FUNCTION

Intercom audio may be generated in two modes between users, "live" (on constantly) or "VOX" (voice activated). This is selected, along with the squelch threshold of the VOX circuit, by the "VOX SQUELCH" control on the front of the AA80. When the VOX trigger is activated, the front panel indicator will light up amber, indicating that the ICS system is ON.

Intercom level or volume is set by the "ICS VOLUME" control on the front of the AA80. It does not affect the level of other audio within the system.

ICS functions are available to all users when the system switch is in the "INTERVOX" mode. When switch is in the "PILOT ISOLATION" mode, only the co-pilot and the passenger(s) have ICS capability.

SECTION V thru X

No change to these Sections when the AA80 intercom system is installed except that the weight and balance information will require updating.
MOONEY AIRCRAFT CORPORATION
P.O. BOX 72
KERRVILLE, TEXAS 78029-0072

FAA APPROVED

AIRPLANE FLIGHT MANUAL SUPPLEMENT

FOR

Mooney Aircraft Model

M20M, M20R

WITH

PROPELLER DE-ICE SYSTEM

REG. NO. G-BYZY OY-EZY

SERIAL NO. 29-0045 OE-KGG

This Supplement must be attached to the applicable FAA Approved Pilot’s Operating Handbook and Airplane Flight Manual (POH/AFM) when the Propeller De-Ice System is installed in accordance with Mooney Drawing 690003. The information contained herein supplements or supersedes the basic manual only in those areas listed. For limitations, procedures and performance information not contained in this supplement, consult the basic Airplane Flight Manual.

FAA APPROVED: Henry A. Armstrong

Henry A. Armstrong, Manager
Aircraft Certification Service
FEDERAL AVIATION ADMINISTRATION
Fort Worth, Texas.
76193-0150

Issue Date: 6 - 29 - 89
REV. A: 6 - 5 - 90
REV. B: 12 - 93
REV. C: 8 - 94

Page 1 of 3
<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Revision Pages</th>
<th>Description of Revisions</th>
<th>FAA Approved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>All Pages</td>
<td>Added M20R to Heading of all pages.</td>
<td>[Signature]</td>
<td></td>
</tr>
</tbody>
</table>

The revised portions of affected pages are indicated by vertical black lines in the margin.

FAA APPROVED

DATE: 6 - 29 - 89
PAGE 2 of 3
The propeller de-ice system is intended for use if unexpected icing conditions are encountered. The system is operated by a rocker switch/circuit breaker located in the pilot's panel. When the switch is placed in the "ON" position, current flows to a timing device which supplies power to the heating elements in the propeller boots. Each propeller blade boot contains heating elements which are cycled ON and OFF every 90 seconds by the timer. An annunciator light is illuminated whenever the de-ice rocker switch is turned on and will cycle ON & OFF with timer, indicating when current is being applied to heating elements.

SECTION II - LIMITATIONS

There is no change to the airplane limitations when the propeller de-ice system is installed.

Flight into known icing conditions is prohibited.

SECTION III - EMERGENCY PROCEDURES

No change

SECTION IV - NORMAL PROCEDURES

If unexpected icing conditions are encountered, the following procedure is recommended:

1. "PROP DE-ICE" switch - ON.
2. Verify "PROP DE-ICE" light (BLUE) is illuminated on the annunciator panel.

NOTE

The airplane ammeter should fluctuate slightly as the timer cycles ON and OFF every 90 seconds.

SECTION V - PERFORMANCE

Sea level rate of climb will be reduced approximately 50 FPM, with no reduction in cruise true airspeed.

SECTION VI THROUGH X

No Change
EASA APPROVED FLIGHT MANUAL SUPPLEMENT
FOR AIRCRAFT EQUIPED WITH
GARMIN GTX 33 Mode S Transponder

AIRCRAFT MAKE: Mooney Aircraft
AIRCRAFT MODEL: M20 Series
S/N: 29-0845

This document must be carried in the aircraft at all times. It provides limitations and other information for operation of aircraft equipped with the GARMIN GTX 33 Mode S Transponder, installed in accordance with DAO Aviation Minor Change DAO-DO-0475 rev.02.

This document serves as the EASA Approved Supplemental Flight Manual for the Garmin GTX 33 Mode S transponder.

The Information contained herein supplements or supersedes the basic Flight Manual only in those areas listed herein. For limitations, procedures, and performance information not contained in this document, consult the basic Flight Manual.
AIRCRAFT MAKE: Mooney Airplane Corp
AIRCRAFT MODEL: M20 Series
(DAO DOH Rev: 00)

GARMIN GTX 33 Mode S Transponder
DOCUMENT NO. DAO-DD-0475-AFMS-00 REV. 02

RECORD OF REVISIONS

This "Record of Revisions" identifies all revisions to this document. When changes to this document are needed, revisions will be issued by the Applicant for this AFMS and if necessary approved by the EASA.

Applicant:

EASA DOA: EASA.21J.275
Name: DAO Aviation A/S
Address: Hangarvej H 1
 4000 Roskilde

This "Record of Revisions" shall remain in this document at all times. Upon receipt of revisions, insert page(s) into this document and enter the revision number, revision date, insertion date and signature of the person incorporating the revision into the document in the appropriate spaces below.

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Pages affected</th>
<th>Revision date</th>
<th>EASA Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>01-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ISSUED DATE: 10/14/12
SECTION I: GENERAL

1. The aircraft is equipped with single Garmin GTX 33 ATC Mode A/C/S transponder with IDENT capability. Control of the transponder is done via the installed GTN series navigator system.

3. This transponder installation does not transmit any Enhanced (EHS) surveillance parameters.

SECTION II: LIMITATIONS

1. Software version 6.0 or later must be installed in the GTX33 to avoid transmission of EHS parameters.
INTRODUCTION

FAA approved data pertaining to Limitations, Normal Procedures, Emergency Procedures, and effects on performance for certain optional equipment installed in the airplane are contained in this section. Commonly installed items of optional equipment whose function and operation do not require detailed instructions are described by SECTION VII.

The Supplements are Approved by the FAA prior to incorporation into the Airplane Flight Manual.
SECTION III: EMERGENCY PROCEDURES

ABNORMAL PROCEDURES

No change

SECTION IV: NORMAL PROCEDURES

1. DETAILED OPERATING PROCEDURES

* Note *

Expected coverage from the GTX 33 is limited to "line of sight." Low altitude or aircraft antenna shielding by the aircraft itself may result in reduced range. Range can be improved by climbing to a higher altitude.

The GTX 33 will power up together with the GTN series navigator system. The GTX 33 air/ground configuration is controlled from the GTN. The air/ground threshold is the groundspeed at which the GTN transitions from a ground state to an airborne state, and vice versa, it is set to 30 knots. The GTX 33 will automatically switch to Ground

Manual operation:

After Engine Start

1. Radio Master Switch .. ON

The transponder will turn on together with the GTN series navigator system in the same mode of operation selected at the last power down and will display the last entered identification code.

Before Takeoff

1. Touch Altitude reporting key (GTN series touch screen) ALT displays in the squawk code field.

The transponder will be on and respond to Air Traffic Control (ATC) Mode C (altitude and identification) interrogations.

* Note *

Touch On to turn the transponder On for Mode A operation (On displays in the squawk code field). The transponder will transmit the squawk code when interrogated.

Touch VFR to set the squawk code to 7000.
AIRCRAFT MAKE: Mooney Airplane Corp
AIRCRAFT MODEL: M20 Series
(DAO DOH Rev 00)

GARMIN GTX 33 Mode S Transponder
DOCUMENT NO. DAO-DD-0475-AFMS-00 REV. 02

After Landing

1. Touch Ground reporting key (GTN series touch screen)............GND displays in the squawk code field.

 • Note •
 Touch Ground to place transponder in Ground mode.
 Mode S interrogations will be allowed. (GDN displays in the squawk code field).

SECTION V: PERFORMANCE

No change.

SECTION VI: WEIGHT AND BALANCE

See current weight and balance data.

SECTION VII: AIRPLANE & SYSTEM DESCRIPTIONS

See GTX33 Pilot's Guide for a complete description of the GTX33 system.
This document serves as an Airplane Flight Manual Supplement or as a Supplemental Airplane Flight Manual when the aircraft is equipped in accordance with Supplemental Type Certificate 10037574 for the installation and operation of the Garmin GTN 625, 635, 650, 725, or 750 GPS/SBAS Navigation System. This document must be carried in the airplane at all times.

The information contained herein supplements or supersedes the information made available to the operator by the aircraft manufacturer in the form of clearly stated placards or markings, or in the form of an approved Airplane Flight Manual, only in those areas listed herein. For limitations, procedures and performance information not contained in this document, consult the basic placards or markings, or the basic approved Airplane Flight Manual.
LOG OF REVISIONS

<table>
<thead>
<tr>
<th>Revision Number</th>
<th>Date</th>
<th>Number</th>
<th>Description</th>
<th>EASA Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7 Dec 2011</td>
<td>All</td>
<td>Complete Supplement</td>
<td></td>
</tr>
</tbody>
</table>

Date: 7/12/2011
Table of Contents

SECTION

Section 1. GENERAL
1.1 Garmin GTN Navigators 5
1.2 Capabilities 7
1.3 References 8
1.4 Definitions 8

Section 2. LIMITATIONS
2.1 Cockpit Reference Guide 11
2.2 Kinds of Operation 11
2.3 Minimum Equipment 12
2.4 Flight Planning 13
2.5 System Use 14
2.6 Applicable System Software 15
2.7 SD Card 15
2.8 Navigation Database 15
2.9 Ground Operations 16
2.10 Approaches 16
2.11 Display of Distance to Waypoint 17
2.12 Terrain Proximity Function (All Units) 17
2.13 TAWS Function (Optional) 17
2.14 Datalink Weather Display (XM Weather, Optional) 17
2.15 Traffic Display (Optional) 18
2.16 StormScope® Display (Optional) 18
2.17 Flight Planner/Calculator Functions 18
2.18 Glove Use / Covered Fingers 18
2.19 Demo Mode 18

Section 3. EMERGENCY PROCEDURES
3.1 Emergency Procedures 19
3.2 Abnormal Procedures 20

Section 4. NORMAL PROCEDURES
4.1 Unit Power On 25
4.2 Before Takeoff 25
4.3 HSI and EHSI Operation 25
4.4 Autopilot Operation 26
4.5 Coupling the Autopilot during approaches 27

Section 5. PERFORMANCE 28
Section 6. WEIGHT AND BALANCE 28
Section 7. SYSTEM DESCRIPTIONS 28
7.1 Pilot's Guide 28
7.2 Leg Sequencing 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Auto ILS CDI Capture</td>
<td>28</td>
</tr>
<tr>
<td>7.4</td>
<td>Activate GPS Missed Approach</td>
<td>29</td>
</tr>
<tr>
<td>7.5</td>
<td>Terrain Proximity and TAWS</td>
<td>29</td>
</tr>
<tr>
<td>7.6</td>
<td>GMA 35 Audio Panel (Optional)</td>
<td>29</td>
</tr>
<tr>
<td>7.7</td>
<td>Traffic System (Optional)</td>
<td>30</td>
</tr>
<tr>
<td>7.8</td>
<td>StormScope® (Optional)</td>
<td>30</td>
</tr>
<tr>
<td>7.9</td>
<td>Power</td>
<td>31</td>
</tr>
<tr>
<td>7.10</td>
<td>Databases</td>
<td>31</td>
</tr>
<tr>
<td>7.11</td>
<td>External Switches</td>
<td>31</td>
</tr>
</tbody>
</table>
Section 1. GENERAL

1.1 Garmin GTN Navigators

The Garmin GTN navigation system is a GPS system with a Satellite Based Augmentation System (SBAS), comprised of one or more Garmin TSO-C146c GTN 625, 635, 650, 725, or 750 navigator(s) and one or more Garmin approved GPS/ SBAS antenna(s).

GTN navigation system functions are shown in Table 1.

<table>
<thead>
<tr>
<th>Function</th>
<th>GTN 625</th>
<th>GTN 635</th>
<th>GTN 650</th>
<th>GTN 725</th>
<th>GTN 750</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS SBAS Navigation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Oceanic, enroute, terminal, and non-precision approach guidance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>- Precision approach guidance (LP, LPV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF Com Radio, 118.00 to 130.990 MHz, 8.33 or 25 kHz Increments</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF Nav Radio, 108.00 to 117.95 MHz, 60 kHz Increments</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LOC and Glideslope non-precision and precision approach guidance</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Cat 1 minimums, 320.0 to 335.4 MHz tuning range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moving map including topographic, terrain, aviation, and geopolitical</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display of datalink weather products (optional)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Display of terminal procedures data (optional)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Display of traffic data (optional)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Display of StormScope® data (optional)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Display of marker beacon annunciators</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remote audio panel control</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remote transponder control</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remote audio entertainment datalink control</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TSO-C151b Class B TAWS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Supplemental calculators and timers</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1 – GTN Functions

The GPS navigation functions and optional VHF communication and navigation radio functions are operated by dedicated hard keys, a dual concentric rotary knob, or the touchscreen.
1.2 Capabilities

GPS/ SBAS TSO-C146c / ETSO C146 Class 3 Operation:

The GTN, when installed in accordance with STC 10037574, has airworthiness approval for navigation using GPS and SBAS (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) for IFR en route, terminal area, and non-precision approach operations (including those approaches titled "GPS", "or GPS", and "RNAV (GNSS)" approaches). The Garmin GNSS navigation system is composed of the GTN navigator and antenna, and is approved for approach procedures with vertical guidance including "LPV" and "LNAV/VNAV".

The Garmin GNSS navigation system as installed in this aircraft, complies with the equipment requirements of AC 90-105 and meets the equipment performance and functional requirements to conduct RNP terminal departure and arrival procedures and RNP approach procedures without RF (radius to fix) legs. Part 91 subpart K, 121, 125, 129, and 135 operators require operational approval from the FAA.

The Garmin GNSS navigation system as installed in this aircraft complies with the equipment requirements of AC 90-100A for RNAV 2 and RNAV 1 operations. In accordance with AC 90-100A, Part 91 operators (except subpart K) following the aircraft and training guidance in AC 90-100A are authorized to fly RNAV 2 and RNAV 1 procedures. Part 91 subpart K, 121, 125, 129, and 135 operators require operational approval from the FAA.

Applicable to dual installations consisting of two GTNs: The Garmin GNSS navigation system, as installed in this aircraft, has been found to comply with the requirements for GPS Class II oceanic and remote navigation (RNP-10) without time limitations in accordance with AC 20-138A and FAA Order 8400.12A. The Garmin GNSS navigation system can be used without reliance on other long-range navigation systems. This does not constitute an operational approval.

Applicable to dual installations consisting of two GTNs: The Garmin GNSS navigation system, as installed in this aircraft, has been found to comply with the navigation requirements for GPS Class II oceanic and remote navigation (RNP-4) in accordance with AC 20-138A and FAA Order 8400.33. The Garmin GNSS navigation system can be used without reliance on other long-range navigation systems. Additional equipment may be required to obtain operational approval to utilize RNP-4 performance. This does not constitute an operational approval.
The Garmin GNSS navigation system, as installed in this aircraft, complies with the accuracy, integrity, and continuity of function, and contains the minimum system functions required for P-RNAV operations in accordance with IAA Administrative & Guidance Material Section One: General Part 3: Temporary Guidance Leaflets, Leaflet No 10 (JAA TGL-10 Rev 1). The GNSS navigation system has [one or more] TSO-C146c/ETSO-C146 Class 3 approved Garmin GTN Navigation Systems. The Garmin GNSS navigation system as installed in this aircraft complies with the equipment requirements for P-RNAV and B-RNAV/RNAV 5 operations in accordance with AC 90-96A CHG 1 and JAA TGL-10 Rev 1. This does not constitute an operational approval.

Garmin International holds an FAA Type 2 Letter of Acceptance (LOA) in accordance with AC 20-153 for database integrity, quality, and database management practices for the Navigation Database. Flight crew and operators can view the LOA status at FlyGarmin.com then select "Type 2 LOA Status." Navigation information is referenced to WGS-84 Reference System.

Note that for some types of aircraft operation and for operation in non-U.S. airspace, separate operational approval(s) may be required in addition to equipment installation and airworthiness approval.

1.3 References
Temporary Guidance Leaflet 10, Rev 1: Airworthiness and Operational Approval for Precision RNAV Operations in Designated European Airspace.

Acceptable Means of Compliance 20-28, Airworthiness Approval and Operational Criteria for RNAV GNSS Approach Operation to LPV Minima using SBAS

1.4 Definitions
The following terminology is used within this document:

ADF: Automatic Direction Finder
APR: Approach
CDI: Course Deviation Indicator
DME: Distance Measuring Equipment
EHSI: Electronic Horizontal Situation Indicator
GNSS: Global Navigation Satellite System
GPS: Global Positioning System
GPSS: GPS Roll Steering
GTN: Garmin Touchscreen Navigator
HSI: Horizontal Situation Indicator
IAF: Instrument Approach Procedure
IFR: Instrument Flight Rules
ILS: Instrument Landing System
IMC: Instrument Meteorological Conditions
LDA: Localizer Directional Aid
LNAV: Lateral Navigation
LNAV+V: Lateral Navigation with advisory Vertical Guidance
LVNAV: Lateral/Vertical Navigation
LOC: Localizer
LOC-BC: Localizer Backcourse
LP: Localizer Performance
LPV: Localizer Performance with Vertical Guidance
MDA: Minimum Descent Altitude
MDB: Minimum Descent Height
MLS: Microwave Landing System
OBS: Omnidirectional Bearing Select
RAIM: Receiver Autonomous Integrity Monitoring
RMT: Remote
RNAV: Area Navigation
RNP: Required Navigational Performance
SBAS: Satellite Based Augmentation System
SD: Secure Digital
SDF: Simplified Directional Facility
SUSP: Suspend
TACAN: Tactical Air Navigation System
TAS: Traffic Awareness System
TAWS: Terrain Awareness and Warning System
TCAS: Traffic Collision Avoidance System
TIS: Traffic Information Service
VHF: Very High Frequency
VFR: Visual Flight Rules
VLOC: VOR/Localizer
VMC: Visual Meteorological Conditions
VOR: VHF Omnidirectional Range
WAAS: Wide Area Augmentation System
WFDE: WAAS Fault Data Exclusion
XFR: Transfer
Section 2. LIMITATIONS

2.1 Cockpit Reference Guide
The Garmin GTN 6XX or GTN 7XX Cockpit Reference Guide, part number and revision listed below (or later revisions), must be immediately available to the flight crew whenever navigation is predicated on the use of the GTN.

- GTN 6XX Cockpit Reference Guide P/N 190-01004-04 Rev A
- GTN 7XX Cockpit Reference Guide P/N 190-01007-04 Rev A

2.2 Kinds of Operation
This AFM supplement does not grant approval for IFR operations to aircraft limited to VFR operations.

IFR approved aircraft may have a GTN installed that is limited to VFR operations only. GTN installations limited to VFR are placarded in close proximity to the GTN: “GPS LIMITED TO VFR USE ONLY”. Systems with this placard are not approved for GPS navigation during IFR operations.
2.3 Minimum Equipment

If the installation of the GTN is not limited to VFR, the GTN must have the following system interfaces fully functional in order to be used for IFR operations:

<table>
<thead>
<tr>
<th>Interfaced Equipment</th>
<th>Number Required for IFR</th>
<th>Number Required for IFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>External HSI/CDI/EHSI</td>
<td>1 or more</td>
<td>1</td>
</tr>
<tr>
<td>External GPS Annunciator</td>
<td>See Note 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2 – Required Equipment

Note 1: Certain installations require an external GPS annunciator panel. If installed, this annunciator must be fully functional to use the GTN for IFR operations.

Single engine piston aircraft under 6,000 lbs maximum takeoff weight:

Required Equipment for IFR operations: Single GTN Navigator

Single engine turbine aircraft or multi-engine piston aircraft under 6,000 lbs maximum takeoff weight:

Required Equipment for IFR operations: Single GTN Navigator plus a second source of GPS navigation or a separate source of VHF navigation.

Operation in remote or oceanic operation requires two sources of GPS navigation.

Aircraft over 6,000 lbs maximum takeoff weight:

Required Equipment for IFR operations: Single GTN Navigator plus a second source of GPS navigation or a separate source of VHF navigation.

Operation in remote or oceanic operation requires two sources of GPS navigation.
2.4 Flight Planning

For flight planning purposes, in areas where SBAS coverage is not available, the pilot must check RAIM availability. Within the United States, RAIM availability can be determined using the Garmin WFDE Prediction program, Garmin part number 006-A0154-04 (included in GTN trainer) software version 3.00 or later approved version with Garmin approved antennas or the FAA's en route and terminal RAIM prediction websites: www.raimprediction.net, or by contacting a Flight Service Station. Within Europe, RAIM availability can be determined using the Garmin WFDE Prediction program or Europe’s AUGER GPS RAIM Prediction Tool at http://augur.eccanav.com/augur/app/home. For other areas, use the Garmin WFDE Prediction program. This requirement is not necessary if SBAS coverage is confirmed to be available along the entire route of flight. The route planning and WFDE prediction programs may be downloaded from the Garmin website on the internet. For information on using the WFDE Prediction Program, refer to Garmin WAAS FDE Prediction Program, part number 190-00643-01, "WFDE Prediction Program Instructions".

For flight planning purposes, the availability of GPS RAIM shall be confirmed for the intended route of flight. In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended route of flight, the flight should be delayed, canceled, or rerouted on a track where RAIM requirements can be met. The flight may also be re-planned using non-GPS based navigational capabilities.

For flight planning purposes for operations within European B-RNAV/RNAV 5 and P-RNAV airspace, if more than one satellite is scheduled to be out of service, then the availability of GPS RAIM shall be confirmed for the intended flight (route and time). In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended flight, the flight should be delayed, canceled, or rerouted on a track where RAIM requirements can be met.

Applicable to Installations consisting of two GTNs: For flight planning purposes, operations where the route requires Class II navigation the aircraft's operator or pilot-in-command must use the Garmin WFDE Prediction program to demonstrate that there are no outages on the specified route that would prevent the Garmin GNSS navigation system to provide GPS Class II navigation in oceanic and remote areas of operation that requires (RNP-10 or RNP-4) capability. If the Garmin WFDE Prediction program indicates fault exclusion (FDE) availability will exceed 34 minutes in accordance with FAA Order 8400.12A for RNP-10 requirements, or 25 minutes in accordance with FAA Order 8400.33 for RNP-4 requirements, then the operation must be rescheduled when FDE is available.

Both Garmin GPS navigation receivers must be operating and providing GPS navigation guidance for operations requiring RNP-4 performance.

190-01007-E2 Rev. I

EASA APPROVED DATE: 7th December 2011
Applicable to installations consisting of two GTNs: North Atlantic (NAT)

Minimum Navigational Performance Specifications (MNPS) Airspace operations per AC 91-49 and AC 120-33 require both GPS/SBAS receivers to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor. Each display computes an independent navigation solution based on its GPS sensor.

Whenever possible, RNP and RNAV routes including Standard Instrument Departures (SIDs) and Obstacle Departure Procedures (ODPs), Standard Terminal Arrival (STAR), and enroute RNAV "Q" and RNAV "T" routes should be loaded into the flight plan from the database in their entirety, rather than loading route waypoints from the database into the flight plan individually. Selecting and inserting individual named fixes from the database is permitted, provided all fixes along the published route to be flown are inserted. Manual entry of waypoints using latitude/longitude or place/bearing is prohibited.

It is not acceptable to flight plan a required alternate airport based on RNAV(GNSS) LP/LPV or LNAV/VNAV approach minimums. The required alternate airport must be flight planned using an LNAV approach minimums or available ground-based approach aid.

Navigation information is referenced to the WGS-84 reference system, and should only be used where the Aeronautical Information Publication (including electronic data and aeronautical charts) conform to WGS-84 or equivalent.

2.5 System Use

In installations with two GTNs and an external GPS annunciator (See Table 2) the GTN connected to the external GPS annunciator must be used as the navigation source for all operations.

The only approved sources of course guidance are on the external CDI, HSI, or EHSI display. The moving map and CDI depiction on the GTN display are for situational awareness only and are not approved for course guidance.
2.6 Applicable System Software

This AFMS/AFM is applicable to the software versions shown in Table 3.

The Main and GPS software versions are displayed on the start-up page immediately after power-on. All software versions displayed in Table 3 can be viewed on the System – System Status page.

<table>
<thead>
<tr>
<th>Software Item</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main SW Version</td>
<td>2.00</td>
</tr>
<tr>
<td>GPS SW Version</td>
<td>4.0</td>
</tr>
<tr>
<td>Com SW Version</td>
<td>2.01</td>
</tr>
<tr>
<td>Nav SW Version</td>
<td>6.01</td>
</tr>
</tbody>
</table>

Table 3 - Software Versions

2.7 SD Card

Proper function of the unit is predicated on the SD card being present. Garmin cannot assure functionality if the SD card is inserted or removed while the unit is powered on.

2.8 Navigation Database

GPS/SBAS based IFR enroute, oceanic, and terminal navigation is prohibited unless the pilot verifies and uses a valid, compatible, and current Navigation database or verifies each waypoint for accuracy by reference to current approved data.

"GPS", "or GPS", and "RNAV (GNSS)" instrument approaches using the Garmin navigation system are prohibited unless the pilot verifies and uses the current Navigation database. GPS based instrument approaches must be flown in accordance with an approved instrument approach procedure that is loaded from the Navigation database.

Discrepancies that invalidate a procedure should be reported to Garmin International. The affected procedure is prohibited from being flown using data from the Navigation database until a new Navigation database is installed in the aircraft and verified that the discrepancy has been corrected. Navigation database discrepancies can be reported at FlyGarmin.com by selecting "Aviation Data Error Report." Flight crew and operators can view Navigation database alerts at FlyGarmin.com then select "NavData Alerts."

If the Navigation database cycle will change during flight, the pilot must ensure the accuracy of navigation data, including suitability of navigation facilities used.
to define the routes and procedures for flight. If an amended chart affecting navigation data is published for the procedure, the database must not be used to conduct the procedure.

2.9 Ground Operations
Do not use SafeTaxi or Chartview functions as the basis for ground maneuvering. SafeTaxi and Chartview functions do not comply with the requirements of AC 20-159 and are not qualified to be used as an airport moving map display (AMMD). SafeTaxi and Chartview are to be used by the flight crew to orient themselves on the airport surface to improve pilot situational awareness during ground operations.

2.10 Approaches
a) Instrument approaches using GPS guidance may only be conducted when the GTN is operating in the approach mode. (LNAV, LNAV+V, LVNAV, LPV, or LP)

b) When conducting instrument approaches referenced to true North, the NAV Angle on the System -Units page must be set to True.

c) The navigation equipment required to join and fly an instrument approach procedure is indicated by the title of the procedure and notes on the IAP chart. Navigating the final approach segment (that segment from the final approach fix to the missed approach point) of an ILS, LOC, LOC-BC, LDA, SDF, MLS, VOR, TACAN approach, or any other type of approach not approved for GPS, is not authorized with GPS navigation guidance. GPS guidance can only be used for approach procedures with GPS or RNAV in the procedure title. When using the Garmin VOR/LOC/GS receivers to fly the final approach segment, VOR/LOC/GS navigation data must be selected and presented on the CDI of the pilot flying.

d) Advisory vertical guidance deviation is provided when the GTN announces LNAV + V. Vertical guidance information displayed on the VDI in this mode is only an aid to help pilots comply with altitude restrictions.

NOTE
When the unit announces "LNAV + V", the vertical guidance being provided on the CDI is advisory only and cannot be used as the primary means to meet altitude minimums prescribed in the approach procedure. The pilot must adhere to all step-down approach altitude minimums using the barometric altimeter installed in the aircraft, and LNAV minimums must be used for the approach MDA/MDH.

e) Not all published Instrument Approach Procedures (IAP) are in the Navigation database. Pilots planning to fly an RNAV instrument approach must ensure that the Navigation database contains the planned RNAV Instrument Approach.
Procedure and that approach procedure must be loaded from the Navigation database into the GTN system flight plan by its name. Users are prohibited from flying any approach path that contains manually entered waypoints.

f) IFR approaches are prohibited whenever any physical or visual obstruction (such as a throw-over yoke) restricts pilot view or access to the GTN and/or the CDL.

2.11 Display of Distance to Waypoint
During installation, the GTN was configured to display distance to current waypoint on the Map Page (GTN 7XX) or Default Navigation Page (GTN 6XX). The display location of distance to current waypoint must not be altered or removed from these pages.

2.12 Terrain Proximity Function (All Units)
Terrain proximity and obstacle information appears on the map and terrain display pages as red and yellow tiles or towers, and is depicted for advisory use only. Aircraft maneuvers and navigation must not be predicated upon the use of the terrain display. Terrain proximity and obstacle information is advisory only and is not equivalent to warnings provided by TAWS.

The terrain proximity display is intended to serve as a situational awareness tool only. By itself, it may not provide either the accuracy or the fidelity on which to base decisions and plan maneuvers to avoid terrain or obstacles.

NOTE
Terrain and TAWS are separate features and mutually exclusive. If "TAWS B" is shown on the bottom right of the dedicated terrain page, then TAWS is installed.

2.13 TAWS Function (Optional)
Pilots are authorized to deviate from their current ATC clearance to the extent necessary to comply with TAWS warnings. Navigation must not be predicated upon the use of TAWS.

If an external TAWS annunciator panel is installed in the aircraft, this annunciator panel must be fully functional in order to use the TAWS system.

NOTE
Terrain and TAWS are separate features and mutually exclusive. If "TAWS B" is shown on the bottom right of the dedicated terrain page, then TAWS is installed.

2.14 Datalinked Weather Display (XM Weather, Optional)
Datalink weather data is provided by an optional GDL 69 or 69A interface. The weather information display on the GTN is a supplementary weather product for 190-01007-E2 Rev. 1
Section 3. EMERGENCY PROCEDURES

3.1 Emergency Procedures

3.1.1 TAWS WARNING
Red annunciator and aural "PULL UP":
Autopilot.. DISCONNECT
Aircraft Controls... INITIATE MAXIMUM POWER CLimb
Airspeed... BEST ANGLE OF CLIMB SPEED

After Warning Ceases:
Power .. MAXIMUM CONTINUOUS
Altitude ... CLIMB AND MAINTAIN SAFE ALTITUDE
Advise ATC of Altitude Deviation, if appropriate.

NOTE
Only vertical maneuvers are recommended, unless either operating in visual meteorological conditions (VMC), or the pilot determines, based on all available information, that turning in addition to the escape maneuver is the safest course of action, or both.
3.2 Abnormal Procedures

3.2.1 LOSS OF GPS/SBAS NAVIGATION DATA
When the GPS/SBAS receiver is inoperative or GPS navigation information is not available or invalid, the GTN will enter one of two modes: Dead Reckoning mode (DR) or Loss Of Integrity mode (LOI). The mode is indicated on the GTN by an amber "DR" or "LOI".

If the Loss Of Integrity annunciation is displayed, revert to an alternate means of navigation appropriate to the route and phase of flight.

If the Dead Reckoning annunciation is displayed, the map will continue to be displayed with an amber 'DR' overwriting the ownership icon. Course guidance will be removed on the CDI. Aircraft position will be based upon the last valid GPS position, then estimated by Dead Reckoning methods. Changes in true airspeed, altitude, heading, or winds aloft can affect the estimated position substantially. Dead Reckoning is only available in Enroute and Oceanic modes. Terminal and Approach modes do not support Dead Reckoning.
If Alternate Navigation Sources (ILS, LOC, VOR, DME, ADF) Are Available:

Navigation ... USE ALTERNATE SOURCES

If No Alternate Navigation Sources Are Available:

DEAD RECKONING (DR) MODE:

Navigation .. USE GTN

NOTE

- All information normally derived from GPS will become less accurate over time.

LOSS OF INTEGRITY (LOI) MODE:

Navigation FLY TOWARDS KNOWN VISUAL CONDITIONS

NOTE

- All information derived from GPS will be removed.
- The airplane symbol is removed from all maps. The map will remain centered at the last known position. “NO GPS POSITION” will be annunciated in the center of the map.
3.2.2 GPS APPROACH DOWNGRADE

During a GPS LPV, LNAV/VNAV, or LNAV+V approach, if GPS accuracy requirements cannot be met by the GPS receiver, the GTN will downgrade the approach. The downgrade will remove vertical deviation indication from the VDI and change the approach annunciation accordingly from LPV, L/VNAV, or LNAV+V to LNAV. The approach may be continued using the LNAV only minimums.

During a GPS approach in which GPS accuracy requirements cannot be met by the GPS receiver for any GPS approach type, the GTN will flag all CDI guidance and display a system message "ABORT APPROACH-GPS approach no longer available". Immediately upon viewing the message, the unit will revert to Terminal navigation mode alarm limits. If the position integrity is within these limits lateral guidance will be restored and the GPS may be used to execute the missed approach, otherwise alternate means of navigation must be utilized.

3.2.3 LOSS OF COM RADIO TUNING FUNCTIONS
If alternate COM is available:
Communications.. USE ALTERNATE COM

If no alternate COM is available:
COM RM? XFR key (if installed)......PRESS AND HOLD FOR 2 SECONDS

NOTE
This procedure will tune the active COM radio the emergency frequency 121.5, regardless of what frequency is displayed on the GTN.

Certain failures of the tuning system will automatically tune 121.5 without pilot action. These failures may result in an unresponsive or blank display, or a red X over the com frequency display area. In any case, attempt to use the communication radio and expect it to be tuned to 121.5, regardless of the displayed active com frequency.

3.2.4 LOSS OF AUDIO PANEL FUNCTIONS (GMA 35 Only)
Audio Panel Circuit Breaker...FULL

NOTE
This procedure will force the audio panel to provide the pilot only with communications on the Non-GTN 750 radio. If only a GTN 750 is installed in the aircraft, then the pilot will have communications on the GTN 750. The crew and passenger intercom will not function.
3.2.5 TAWS CAUTION (Terrain or Obstacle Ahead, Sink Rate, Don’t Sink)
When a TAWS CAUTION occurs, take corrective action until the alert ceases.
Stop descending or initiate either a climb or a turn, or both as necessary, based on
analysis of all available instruments and information.

3.2.6 TAWS INHIBIT
The TAWS Forward Looking Terrain Avoidance (FLTA) and Premature Descent
Alerts (PDA) functions may be inhibited to prevent alerting, if desired. Refer to
GTN Cockpit Reference Guide for additional information.

To Inhibit TAWS:
Home Hardkey...PRESS
Terrain Button...PRESS
Menu Button...PRESS
TAWS Inhibit Button... PRESS TO ACTIVATE

3.2.7 TER N/A and TER FAIL
If the amber TER N/A or TER FAIL status annunciator is displayed, the system
will no longer provide TAWS alerting or display relative terrain and obstacle
elevations. The crew must maintain compliance with procedures that ensure
minimum terrain and obstacle separation.

3.2.8 HEADING DATA SOURCE FAILURE
Without a heading source to the GTN, the following features will not operate:
• GPSS will not be provided to the autopilot for heading legs. The autopilot
 must be placed in HDG mode for heading legs.
• Map cannot be oriented to Heading Up.
• All overlaying traffic data from a TAS/TCAS I system on the main map
display. The pilot must use the dedicated traffic page on the GTN system to
display TAS/TCAS I data.
• All overlaying StormScope® data on the main map display. The pilot must
 use the dedicated StormScope® page on the GTN system to display
StormScope® data.

StormScope® must be operated in accordance with Section 7.8 when no heading
is available.
3.2.9 PRESSURE ALTITUDE DATA SOURCE FAILURE
Without a pressure altitude source to the GTN, the following features will not operate:

* Automatic leg sequencing of legs requiring an altitude source. The pilot must manually sequence altitude legs, as prompted by the system.
Section 4. NORMAL PROCEDURES

Refer to the Cockpit Reference Guide defined in Section 2.1 of this document or the Pilot's Guide defined in Section 7.1 for normal operating procedures and a complete list of system messages and associated pilot actions. This includes all GPS operations, VHF communication and navigation, traffic, data linked weather, StormScope®, TAWS, and Multi-Function Display information.

The GTN requires a reasonable degree of familiarity to prevent operations without becoming too engrossed at the expense of basic instrument flying in IMC and basic see-and-avoid in VMC. Garmin provides training tools with the Pilot's Guide and PC based simulator. Pilots should take full advantage of these training tools to enhance system familiarization.

4.1 Unit Power On

Database... REVIEW EFFECTIVE DATES
Self Test... VERIFY OUTPUTS TO NAV INDICATORS
Self Test - TAWS Remote Annunciator:
 PULL UP ... ILLUMINATED
 TERR ... ILLUMINATED
 TERR N/A .. ILLUMINATED
 TERR INHIB .. ILLUMINATED
Self Test - GPS Remote Annunciator:
 VLOC ... ILLUMINATED
 GPS .. ILLUMINATED
 LOI or INTG .. ILLUMINATED
 TERM .. ILLUMINATED
 WPT ... ILLUMINATED
 APR ... ILLUMINATED
 MSG .. ILLUMINATED
 SUSP or OBS .. ILLUMINATED

4.2 Before Takeoff

System Messages and Annunciators...................................... CONSIDERED

4.3 HSI and EHSI Operation

If an HSI is used to display navigation data from the GTN the pilot should rotate the course pointer as prompted on the GTN.

If an EHSI is used to display navigation data from the GTN the course pointer may autoslew to the correct course when using GPS navigation. When using VLOC
navigation the course pointer will not autoslew and must be rotated to the correct
course by the pilot. For detailed information about the functionality of the EHSI
system, refer to the approved Flight Manual or Flight Manual Supplement for that
system.

CAUTION

The pilot must verify proper course selection each time the CDI source is changed
from GPS to VLOC.

4.4 Autopilot Operation

The GTN may be coupled to an optional autopilot, if installed in the aircraft.

Autopilots coupled to the GTN system in an analog (NAV) mode will follow GPS
or VHF navigation guidance as they would with existing VOR receivers.

Autopilots that support OPSS or GPS Roll Steering in addition to the analog
course guidance will lead course changes, fly arcing procedures, procedure turns,
and holding patterns if coupled in OPSS mode.

For autopilot operating instructions, refer to the approved Flight Manual or Flight
Manual Supplement for the autopilot.
4.5 Coupling the Autopilot during approaches

CAUTION

When the CDI source is changed on the GTN, autopilot mode may change. Confirm autopilot mode selection after CDI source change on the GTN. Refer to the approved Flight Manual or Flight Manual Supplement for the autopilot.

☐ This installation prompts the pilot and requires the pilot to enable the approach outputs just prior to engaging the autopilot in APR mode.

To couple an approach:
Once established on the final approach course with the final approach fix as the active waypoint, the GTN will issue a flashing message indication.

- Flashing Message Button PRESS
- "Enable APR Output" Button PRESS

If coupled, Autopilot will revert to ROL mode at this time.

Autopilot .. ENGAGE APPROACH MODE

☐ This installation supports coupling to the autopilot in approach mode once vertical guidance is available.

To couple an approach:
Once established on the final approach course with the final approach fix as the active waypoint, the GTN will enable vertical guidance.

Vertical Guidance CONFIRM AVAILABLE
Autopilot ENGAGE APPROACH MODE

☐ The autopilot does not support any vertical capture or tracking in this installation.

Analog only autopilots should use APR mode for coupling to LNAV approaches. Autopilots which support digital roll steering commands (GPSS) may utilize NAV mode and take advantage of the digital tracking during LNAV only approaches.
Section 5. PERFORMANCE

No change.

Section 6. WEIGHT AND BALANCE

See current weight and balance data.

Section 7. SYSTEM DESCRIPTIONS

7.1 Pilot’s Guide
The Garmin GTN 6XX or GTN 7XX Pilot’s Guide, part number and revision listed below, contain additional information regarding GTN system description, control and function. The Pilot’s Guides do not need to be immediately available to the flight crew.

* GTN 6XX Pilot’s Guide P/N 190-01004-03 Rev A or later
* GTN 7XX Pilot’s Guide P/N 190-01007-03 Rev A or later

7.2 Leg Sequencing
The GTN supports all ARINC 424 leg types. Certain leg types require altitude input in order to sequence (course to altitude, for example). If a barometric corrected altitude source is not interfaced to the GTN, a popup will appear prompting the pilot to manually sequence the leg once the altitude prescribed in the procedure is reached.

☐ This installation has a barometric corrected altitude source. The GTN will automatically sequence altitude legs.
☐ This installation does not have a barometric corrected altitude source. The pilot will be prompted to manually sequence altitude legs.

7.3 Auto ILS CDI Capture
Auto ILS CDI Capture will not automatically switch from GPS to VLOC for LOC-BC or VOR approaches.
7.4 Activate GPS Missed Approach

In this installation, the GTN will autoswitch from VLOC to GPS when the
"Activate GPS Missed Approach" button is pressed to initiate guidance on the
missed approach procedure.

In this installation, the GTN will not autoswitch from VLOC to GPS when the
"Activate GPS Missed Approach" button is pressed to initiate guidance on the
missed approach procedure. The pilot must manually switch from VLOC to
GPS on the external course deviation indicator if GPS guidance is desired
after the missed approach point.

2.5 Terrain Proximity and TAWS

- The Terrain Database has an area of coverage from North 75° Latitude to
South 60° Latitude in all longitudes.
- The Obstacle Database has an area of coverage that includes the United States
and Europe, and is updated as frequently as every 36 days.
- To avoid unwanted alerts, TAWS may be inhibited when landing at an airport
that is not included in the airport database.

NOTE
The area of coverage may be modified as additional terrain data
sources become available.

- This installation supports Terrain Proximity. No aural or visual alerts for
terrain or obstacles are provided. Terrain Proximity does not satisfy the
TAWS requirement of 91.223.
- This installation supports TAWS B. Aural and visual alerts will be provided.
This installation does support the TAWS requirement of 91.223.

7.6 GMA 35 Audio Panel (Optional)
The GTN 725 and 750 can interface to a GMA 35 remotely mounted audio panel
and marker beacon receiver. Controls for listening to various radios, activating
the cabin speaker, clearance playback control, and marker beacon are accessed by
pressing the "Audio Panel" button on the GTN display screen. Volume controls
for the audio panel are accessed by pressing the "Intercom" button on the GTN
display screen.
7.7 Traffic System (Optional)

This system is configured for the following type of traffic system. The Garmin GTN 600X or GTN 7XX Cockpit Reference Guide or Garmin GTN 6XX or GTN 7XX Pilot’s Guide provides additional information regarding the functionality of the traffic device.

☐ No traffic system is interfaced to the GTN.
☐ A TASS/TCAS I traffic system is interfaced to the GTN.
☐ A TIS traffic system is interfaced to the GTN.

7.8 StormScope® (Optional)

When optionally interfaced to a StormScope® weather detection system, the GTN may be used to display the StormScope® information. Weather information supplied by the StormScope® will be displayed on the StormScope® page of the GTN system. For detailed information about the capabilities and limitations of the StormScope® system, refer to the documentation provided with that system.

Heading Up mode:

If the GTN system is receiving valid heading information, the StormScope® page will operate in the heading up mode as indicated by the label “HDG UP” presented at the upper right corner of the display. In this mode, information provided by the StormScope® system is displayed relative to the nose of the aircraft and is automatically rotated to the correct relative position as the aircraft turns.

Track Up mode:

If the GTN system is not receiving valid heading information, either because a compatible heading system is not installed, or the interfaced heading system has malfunctioned, the StormScope® page will operate in the track up mode as indicated by the label “TRK UP” in the upper right corner of the display. When operating in the track up mode, StormScope® information is displayed relative to the current GPS track of the aircraft and is automatically rotated as the aircraft turns. In track up mode, the pilot must be aware that, if the combination of aircraft speed and crosswind results in a crab angle to maintain the track, the relative bearing of StormScope® information on the GTN display will be offset by an amount equal to the aircraft crab angle. Because the difference between GPS track and aircraft heading can be very large when on the ground, use of the GTN to display StormScope® information in TRK UP mode is prohibited while on the ground.
7.9 Power

- Power to the GTN is provided through a circuit breaker labeled NAV/GPS (1/2).
- Power to the optional GTN COM is provided through a circuit breaker labeled COMM (1/2).
- Power to the optional GMA 35 is powered through a circuit breaker labeled AUDIO.

7.10 Databases

Database versions and effective dates are displayed on the start-up page immediately after power-on. Database information can also be viewed on the System – System Status page.

The Obstacle Database coverage area includes the United States and Europe.

7.11 External Switches

External switches may be installed and interfaced to the GTN. These switches may be stand alone, or integrated with a TAWS or GPS annunciator. Table 4 lists the switches and function they perform:

<table>
<thead>
<tr>
<th>Switch Label</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI</td>
<td>Toggles between GPS / VLOC sources. This switch may be part of an external annunciator panel.</td>
</tr>
<tr>
<td>COM CHAN DN</td>
<td>Toggles down through the preset com frequencies.</td>
</tr>
<tr>
<td>COM CHAN UP</td>
<td>Toggles up through the preset com frequencies.</td>
</tr>
<tr>
<td>COM EMT XFR</td>
<td>Transfers the com active / standby frequencies.</td>
</tr>
<tr>
<td>NAV EMT XFR</td>
<td>Transfers the nav active / standby frequencies.</td>
</tr>
<tr>
<td>OBS</td>
<td>Performs an OBS or SUSP function. This switch is part of an external annunciator panel and is placarded with the following: “Green OBS indicates OBS or SUSP mode – GTN annunciator bar indicates which is active. Push OBS button to change OBS or SUSP mode.”</td>
</tr>
<tr>
<td>OBS/SUSP</td>
<td>Performs an OBS or SUSP function.</td>
</tr>
<tr>
<td>TERR INHB</td>
<td>Toggles the TAWS Inhibit function on/off. This switch is part of an external annunciator panel. The terrain display is still presented if TAWS is Inhibited.</td>
</tr>
</tbody>
</table>

Table 4 – External Switches
MOONEY
MODEL M20R

SECTION X
SAFETY INFORMATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>.10-2</td>
</tr>
<tr>
<td>GENERAL</td>
<td>.10-3</td>
</tr>
<tr>
<td>GENERAL SOURCES OF INFORMATION</td>
<td>.10-3</td>
</tr>
<tr>
<td>RULES AND REGULATIONS</td>
<td>.10-4</td>
</tr>
<tr>
<td>FAR, PART 23, AIRWORTHINESS DIRECTIVES</td>
<td>.10-4</td>
</tr>
<tr>
<td>AIRMAN INFORMATION, ADVISORIES, AND</td>
<td></td>
</tr>
<tr>
<td>NOTICES, FAA AIRMAN'S INFORMATION MANUAL</td>
<td>.10-4</td>
</tr>
<tr>
<td>ADVISORY INFORMATION</td>
<td>.10-4</td>
</tr>
<tr>
<td>GENERAL INFORMATION ON SPECIFIC TOPICS</td>
<td>.10-5</td>
</tr>
<tr>
<td>FLIGHT PLANNING</td>
<td>.10-5</td>
</tr>
<tr>
<td>INSPECTIONS-MAINTENANCE</td>
<td>.10-5</td>
</tr>
<tr>
<td>SPECIAL CONDITIONS CAUTIONARY NOTICE</td>
<td>.10-5</td>
</tr>
<tr>
<td>WALK AROUND INSPECTIONS</td>
<td>10-6</td>
</tr>
<tr>
<td>COCKPIT CHECKS</td>
<td>10-6</td>
</tr>
<tr>
<td>FLIGHT OPERATIONS</td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>.10-6</td>
</tr>
<tr>
<td>TURBULENT WEATHER</td>
<td>.10-6</td>
</tr>
<tr>
<td>FLIGHT IN TURBULENT AIR</td>
<td>.10-6</td>
</tr>
<tr>
<td>MOUNTAIN FLYING</td>
<td>.10-7</td>
</tr>
<tr>
<td>VFR-LOW CEILINGS</td>
<td>.10-7</td>
</tr>
<tr>
<td>VFR AT NIGHT</td>
<td>.10-7</td>
</tr>
<tr>
<td>VERTIGO-DISORIENTATION</td>
<td>.10-7</td>
</tr>
<tr>
<td>STALLS, SPINS AND SLOW FLIGHT</td>
<td>.10-8</td>
</tr>
<tr>
<td>STANDARD PROCEDURE - SPIN RECOVERY</td>
<td>.10-8</td>
</tr>
<tr>
<td>VORTICES-WAKE TURBULENCE</td>
<td>.10-8</td>
</tr>
<tr>
<td>TAKE-OFF AND LANDING CONDITIONS</td>
<td>.10-9</td>
</tr>
<tr>
<td>MEDICAL FACTS FOR PILOTS</td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>.10-9</td>
</tr>
<tr>
<td>FATIGUE</td>
<td>.10-9</td>
</tr>
<tr>
<td>HYPOXIA</td>
<td>.10-8</td>
</tr>
<tr>
<td>HYPERVENTILATION</td>
<td>.10-8</td>
</tr>
<tr>
<td>ALCOHOL</td>
<td>.10-10</td>
</tr>
<tr>
<td>DRUGS</td>
<td>.10-10</td>
</tr>
<tr>
<td>SCUBA DIVING</td>
<td>.10-10</td>
</tr>
<tr>
<td>ADDITIONAL INFORMATION</td>
<td>.10-11</td>
</tr>
<tr>
<td>MANUFACTURER'S INFORMATION</td>
<td>.10-11</td>
</tr>
</tbody>
</table>

ISSUED 6 -94 REV. D 1 - 95 10 - 1
INTRODUCTION

The best of engineering know-how and manufacturing craftsmanship have gone into the design and building of your Mooney aircraft. Like any high performance airplane, it operates most efficiently and safely in the hands of a skilled pilot.

We urge you to be thoroughly familiar with the contents of your operating manuals, placards, and check list to insure maximum utilization of your airplane. When the airplane has changed ownership, some of these may have been misplaced. If any are missing, replacements should be obtained from any Mooney Service Center as soon as possible.

For your added protection and safety, we have added this special section to the Pilot’s Operating Handbook to refresh your knowledge of a number of safety subjects. You should review these subjects periodically.

Topics in this section are mostly excerpts from FAA Documents and other articles pertaining to the subject of safe flying. They are not limited to any particular make or model airplane and do not replace instructions for particular types of airplanes.

Your Mooney aircraft was designed and built to provide you with many years of safe and efficient transportation. By maintaining it properly and flying it prudently, you should realize its full potential.
MOONEY MODEL M20R

SECTION X
SAFETY INFORMATION

GENERAL

Flying is one of the safest modes of travel. Remarkable safety records are being established each year. As a pilot you are responsible to yourself, your relatives, to those who travel with you, to other pilots and to ground personnel to fly wisely and safely.

The following materials in this Safety section covers several subjects in limited detail. Here are some condensed DO's and DON'TS.

--- DO'S ---

1. Be thoroughly familiar with your airplane and be current in it, or get a check ride.
2. Pre-plan all aspects of your flight—weather
 --- FLY YOUR PLAN ---
3. Use services available—FSS, Weather Bureau, etc.
4. Pre-flight your airplane thoroughly.
5. Use your check list.
6. Have more than enough fuel for takeoff, the planned trip, and adequate reserve.
7. Be sure your weight loading and C.G. are within limits.
8. Be sure articles and baggage are secured.
9. Check freedom of all controls.
10. Maintain appropriate airspeed in takeoff, climb, descent and landing.
11. Avoid other aircraft wake turbulence.
12. Switch fuel tanks before engine starvation occurs.
13. Practice engine out, emergency landing gear extension and other emergency procedures at safe altitudes, preferably with a check pilot.
14. Use caution in mountainous terrain.
15. Keep your airplane in good mechanical condition.
16. Stay informed and alert, fly in a sensible manner.

--- DON'TS ---

1. Don’t take off with frost, ice or snow on the aircraft surfaces.
2. Don’t take off with less than minimum recommended fuel, plus reserves.
3. Don’t fly in a reckless, show off, carefree manner.
4. Don’t fly in thunderstorms or severe weather.
5. Don’t fly in possible icing conditions. If you encounter icing conditions, alter altitude or course to minimize exposure.
6. Don’t apply controls abruptly or with high forces that could exceed design loads of the airplane.
7. Don’t fly when physically or mentally exhausted.
8. DON'T TRUST TO LUCK.

GENERAL SOURCES OF INFORMATION

There is a wealth of information available to the pilot created for the sole purpose of making your flying easier, faster, and safer. Take advantage of this knowledge and be prepared for an emergency if other remote event that one should occur. You as a pilot also have certain responsibilities under government regulations. These are designed for your own protection. Compliance is not only beneficial but mandatory.

ISSUED 6 - 94
RULUES AND REGULATIONS

Federal Aviation regulations, Part 91, General Operating and Flight Rules, is a document of law governing operation of aircraft and the owner's and pilot's responsibilities.

This document covers such subjects as:
- Responsibilities and authority of the pilot in command
- Certificates required
- Liquor and drugs
- Flight plans
- Pre-flight section
- Fuel requirements
- Flight rules
- Maintenance, preventative maintenance, alterations, Inspections and maintenance records

These are only some of the topics covered. It is the owner's and pilot's responsibility to be thoroughly familiar with all items in FAR Part 91 and to follow them.

FEDERAL AVIATION REGULATIONS, PART 39 - AIRWORTHINESS DIRECTIVES

This document specifies that no person may operate a product to which an airworthiness directive issued by the FAA applies, except in accordance with the requirements of that airworthiness directive.

AIRMAN INFORMATION, ADVISORIES, AND NOTICES, FAA AIRMAN'S INFORMATION MANUAL

This document contains a wealth of pilot information for nearly all realms of flight, navigation, ground procedures and medical information. Among the subjects are:
- Controlled Air Space
- Services Available to Pilots
- Radio Phraseology and Technique
- Airport Operations
- Clearances and Separations
- Pre-flight
- Departures - IFR
- Enroute - IFR
- Arrival - IFR
- Emergency Procedures
- Weather
- Wake Turbulence
- Medical Facts for Pilots
- Bird Hazards
- Good Operating Practices
- Airport Location Directory

We urge all pilots to be thoroughly familiar with and use the information in this manual.

ADVISORY INFORMATION

Airmen can subscribe to services to obtain FAA NOTAMS and Airman Advisories, and these are also available at FAA Flight Service Stations. NOTAMS are documents that have information of a time-critical nature that would affect a pilot's decision to make a flight; for example, an airport closed, terminal radar out of service, enroute navigational aids out of service, etc.
FLIGHT PLANNING

FAR Part 91 requires that each pilot in command, before beginning a flight, familiarize himself with all available Information concerning that flight.

All pilots are urged to obtain a complete preflight briefing. This would consist of weather, local, enroute and destination, plus alternate, enroute navigation Information. Also airport runways, active, length of runways, takeoff and landing distances for the airplane for conditions expected should be known.

The prudent pilot will review his planned enroute track and stations and make a list for quick reference. It is strongly recommended a flight plan be filed with Flight Service Stations even though the flight may be VFR. Also, advise Flight Service Stations of changes or delays of one hour or more and remember to close the flight plan at destination.

The pilot must be completely familiar with the performance of the airplane and performance data in the airplane manuals and placards. The resultant effect of temperature and pressure altitude must be taken into account in determining performance if not accounted for on the charts. Applicable FAA manuals must be aboard the airplane at all times including the weight and balance forms and equipment lists.

The airplane must be loaded so as not to exceed the weight and the weight and balance loading center of gravity (c.g.) limitations. Also, that at least minimum fuel for takeoff is aboard and sufficient for the trip, plus reserves. Oil in the engines should be checked and filled as required.

INSPECTIONS - MAINTENANCE

In addition to maintenance inspections and preflight information required by FAR Part 91, a complete pre-flight inspection is imperative. It is the responsibility of the owner and operator to assure that the airplane is maintained in an airworthy condition and proper maintenance records are kept.

While the following items cannot substitute for the pre-flight specified for each type of airplane, they will serve as reminders of general items that should be checked.

SPECIAL CONDITIONS CAUTIONARY NOTICE

Airplanes operated for Air Taxi or other than normal operation and airplanes operated in humid tropics or cold and damp climates, etc., may need more frequent inspections for wear, corrosion and or lack of lubrication. In these areas periodic inspections should be performed until the operator can set his own inspection periods based on experience.

NOTE

The required periods do not constitute a guarantee that the item will reach the period without malfunction, as the aforementioned factors cannot be controlled by the manufacturer.

Corrosion, and its effects, must be treated at the earliest possible opportunity. A clean dry surface is virtually immune to corrosion. Make sure that all drain holes remain unobstructed. Protective films and sealants help to keep corrosive agents from contacting metallic surfaces. Corrosion inspections should be made most frequently under high-corrosion-risk operating conditions, such as in regions of heavy airborne salt concentrations (e.g., near the sea) and high-humidity areas (e.g., tropical regions).
WALK AROUND INSPECTIONS

All airplane surfaces free of ice, frost or snow.
Tires properly inflated.
All external locks, covers and tie downs removed.
Fuel sumps drained.
Fuel quantity, adequate for trip, plus reserve, (visually checked) and access doors secured.
Oil quantity checked and access doors secured.
Check general condition of airplane, engine, propeller, exhaust stacks, etc.
All external doors secured.

COCKPIT CHECKS

Flashlight available.
Required documents on board.
Use the check list.
All Internal control locks removed (if installed).
Check freedom of controls.
Cabin and baggage door properly closed.
Seat belts and shoulder harnesses fastened.
Passengers briefed.
Engine and propeller operating satisfactorily.
All engine gauges checked for proper readings.
Fuel selector in proper position.
Fuel quantity checked by gauges.
Altimeter setting checked.

FLIGHT OPERATIONS

GENERAL

The pilot should be thoroughly familiar with all information published by the manufacturer concerning the airplane. The pilot is required by FAA to operate in accordance with the FAR’s and the FAA Approved Airplane Flight Manual and/or placards installed.

TURBULENT WEATHER

A complete weather briefing prior to beginning a flight is the start of assurance of a safe trip. Updating of weather information enroute is another assurance. However, the wise pilot also knows weather conditions change quickly at times and treats weather forecasting as professional advice rather than as absolute fact. He obtains all the advice he can, but still stays alert through knowledge of weather changes, observations, and conditions.

Plan the flight to avoid areas of severe turbulence and thunderstorms. It is not always possible to detect individual storm areas or find the in between clear areas.

Thunderstorms, squall lines and violent turbulence should be regarded as extremely dangerous and MUST be avoided. Hall and tornado wind velocities can be encountered in thunderstorms that can destroy any airplane, just as tornadoes destroy nearly everything in their path on the ground.

A roll cloud ahead of a squall line or thunderstorm is visible evidence of violent turbulence, however, the absence of a roll cloud should not be interpreted as denoting the lack of turbulence.

FLIGHT IN TURBULENT AIR

Even though flight in severe turbulence is to be avoided, flight in turbulent air may be encountered under certain conditions. Flying through turbulent air presents two basic problems, to both of which the answer is PROPER AIRSPEED. On the one hand, if you maintain an excessive airspeed, you run the risk of structural damage or failure; on the other hand, if your airspeed is too low, you may stall. If turbulence encountered in cruise or descent becomes uncomfortable to the pilot or passengers, the best procedure is to reduce speed to the maneuvering speed, which is listed in the Limitations Section of the FAA Approved Airplane Flight Manual and Pilots Operating Handbook. This speed gives the best
assurance of avoiding excessive stress loads, and at the same time providing margin against inadvertent stalls due to gusts.

Beware of overcontrolling in attempting to correct for changes in altitude; applying control pressure abruptly will build up G-forces rapidly and could cause damaging structural stress loads. You should watch particularly your angle of bank, making turns as wide and shallow as possible, and be equally cautious in applying forward or back pressure to keep the nose level. Maintain straight and level attitude in either up or down drafts. Use trim sparingly to avoid being grossly mistrimmed as the vertical air columns change velocity and direction.

MOUNTAIN FLYING

Avoid flight at low altitudes over mountainous terrain, particularly near the lee slopes.

- OBSERVE PUBLISHED MINIMUM ENROUTE ALTITUDES (MEA). If the wind velocity near the level of the ridge is in excess of 25 knots and approximately perpendicular to the ridge, mountain wave conditions are likely over and near the lee slopes. If the wind velocity at the level of the ridge exceeds 60 knots, a strong mountain wave is probable with strong up and down drafts and severe or extreme turbulence. The worst turbulence will be encountered in and below the rotor zone which is usually 6 to 10 miles downwind from the ridge. This zone is characterized by the presence of "roll clouds" if sufficient moisture is present; alto cumulus standing lenticular clouds are also visible signs that a mountain wave exists, but their presence is likewise dependent on moisture. Mountain wave turbulence can, of course, occur in dry air and the absence of such clouds should not be taken as any assurance that mountain wave turbulence will not be encountered. A mountain wave downdraft may exceed the climb capability of your airplane.

--- AVOID MOUNTAIN WAVE DOWNDRAFTS ---

VFR - LOW CEILINGS

If you are not instrument rated, avoid "VFR On Top" and "Special VFR". Being caught above an undercast when an emergency descent is required (or at destination) is an extremely hazardous position for the VFR pilot.

Accepting a clearance out of certain airport control zones with no minimum ceiling and one-mile visibility as permitted with "Special VFR" is not a recommended practice for VFR pilots.

Avoid areas of low ceilings and restricted visibility unless you are instrument proficient and have an instrument equipped airplane. Then proceed with caution and have planned alternates.

VFR - AT NIGHT

When flying VFR at night, in addition to the altitude appropriate for the direction of flight, pilots should maintain a safe minimum altitude as dictated by terrain, obstacles such as TV towers, or communities in the area flown. This is especially true in mountainous terrain, where there is usually very little ground reference and absolute minimum clearance is 2,000 feet. Don't depend on your being able to see obstacles in time to miss them. Flight on dark nights over sparsely populated country can be almost the same as IFR and should be avoided by untrained pilots.

VERTIGO - DISORIENTATION

Disorientation can occur in a variety of ways. During flight, inner ear balancing mechanisms are subjected to varied forces not normally experienced on the ground. This combined with loss of outside visual reference can cause vertigo. False interpretations (illusions) result and may confuse the pilot's conception of the attitude and position of his airplane.

Under VFR conditions the visual sense, using the horizon as a reference, can override the illusions. Under low visibility conditions (night, fog, clouds, haze, etc.) the illusions predominate. Only through awareness of these illusions, and proficiency in instrument flight procedures, can an airplane be operated safely in a low visibility environment.
SECThON X
SAFETY INFORMATION

MOONEY
MODEL M20R

Flying in fog, dense haze or dust, cloud banks, or very low visibility, with strobe lights, and particularly rotating beacons turned on frequently causes vertigo. They should be turned off in these conditions, particularly at night.

All pilots should check the weather and use good judgment in planning flights. The VFR pilot should use extra caution in avoiding low visibility conditions.

Motion sickness often precedes or accompanies disorientation and may further jeopardize the flight.

STALLS, SPINS AND SLOW FLIGHT

Stalls, and slow flight should be practiced at safe altitudes to allow for recovery. Any of these maneuvers should be performed at an altitude in excess of 6,000 feet above ground level. Spins may be dangerous and should be avoided. In fact, most airplanes are placèd against intentional spins. Spins are preceded by stalls. A prompt and decisive stall recovery protects against inadvertent spins. All airplanes are required to have flight characteristics that give adequate advance warning of an impending stall or they must be equipped with an artificial stall warning devices. Keep the artificial system in good working order. Do not operate the airplane with the device made inoperative by the use of circuit breakers or other means.

Stalls should be practiced at safe altitudes for ample recovery. Should a spin be encountered inadvertently, spin recovery should be initiated immediately.

As stall altitude is approached, be alert. Take prompt corrective action to avoid the stall or if you are practicing stalls, react the moment the stall occurs. The following is suggested:

1. Do not carry passengers. Be certain that the airplane’s center of gravity is as far forward as possible. Forward CG aids spin recovery.
2. Be certain that both student pilot and instructor pilot have a full set of operable controls.
3. Conduct such practice at altitudes in excess of 6,000 ft. above ground level.

Remember that an airplane at or near traffic pattern altitude probably will not recover from a spin before impact with the ground. When descending to traffic pattern altitude and during operation in the traffic pattern and approach, maintain a safe margin above stall speed. During takeoff or go-around, be especially careful to avoid departure stalls associated with turns at low speed. Maintain speeds recommended in this handbook (Section II & V).

STANDARD PROCEDURE FOR SPIN RECOVERY

In the event of an inadvertent spin, the following recovery procedure should be used:

Throttle RETARD to IDLE
Altimeter NEUTRAL
Rudder Apply FULL RUDDER opposite the direction of spin.
Control Wheel FORWARD of neutral in a brisk motion to break stall.

Additional FORWARD elevator control may be required if rotation does not stop.

Flaps (If extended) RETRACT as soon as possible
Rudder NEUTRALIZE when spin stops.
Control Wheel Smoothly MOVE AFT to bring the nose up to a level flight attitude after spin has stopped.

VORTICES - WAKE TURBULENCE

Every airplane generates wakes of turbulence while in flight. Part of this is from the propeller or jet engine and part from the wing tip vortices. The larger and heavier the airplane the more pronounced wake turbulence will be. Wing tip vortices from large heavy airplanes are very severe at close range, degenerating with time, wind and space. These are rolling in nature from each wing tip. In fact, vortex velocities of 133 knots have been recorded.

Exhaust velocities from large airplanes at takeoff have been measured at 25 mph, 2100 feet behind medium, large airplanes.

Encountering the rolling effect of wing tip vortices within two minutes or less after passage of large airplanes is hazardous to light airplanes. This roll effect can exceed the maximum counter roll obtainable in an airplane.

ISSUED 6-84
The turbulent areas may remain for as long as three minutes or more, depending on wind conditions, and may extend several miles behind the airplane. Plan to fly slightly above or to the upwind side of the other airplane’s flight path.

Because of the wide variety of conditions that can be encountered, there is no set rule to follow to avoid wake turbulence in all situations. However, the Alman’s Information Manual goes into considerable detail for a number of wake turbulence avoidance procedures. Use prudent judgment and allow ample clearance time and space following or crossing the wake turbulence of other airplanes in all takeoff, climb out, approach and landing operations. Be observant of wake turbulence from all aircraft, regardless of size.

The Alman’s Information Manual contains a section on wake turbulence. FAA Advisory Circular AC 90-230 is also recommended reading.

TAKE-OFF AND LANDING CONDITIONS

When taking off on runways covered with water or freezing slush, the landing gear should remain extended for approximately ten seconds longer than normal, allowing the wheels to spin and dissipate the freezing moisture. The landing gear should then be cycled up, then down, wait approximately five seconds and then retract again. Caution must be exercised to insure that the entire operation is performed below Maximum Landing Gear Operating Airspeed.

Use caution when landing on runways that are covered by water or slush which cause hydroplaning (aquaplaning), a phenomenon that renders braking and steering ineffective because of the lack of sufficient surface friction. Snow and ice covered runways are also hazardous. The pilot should be alert to the possibility of the brakes freezing.

Use caution when taking off or landing in gusty winds. Be aware of special wind conditions caused by buildings or other obstructions located near runway in a crosswind pattern.

MEDICAL FACTS FOR PILOTS

GENERAL

Modern industry's record in providing reliable equipment is very good. When the pilot enters the airplane, he becomes an integral part of the man-machine system. He is just as essential to a successful flight as the control surfaces. To ignore the pilot in pre-flight planning would be as senseless as failing to inspect the integrity of the control surfaces or any other vital part of the machine. The pilot himself has the responsibility for determining his reliability prior to entering the airplane for flight.

While piloting an airplane, an individual should be free of conditions which are harmful to alertness, ability to make correct decisions, and rapid reaction time.

FATIGUE

Fatigue generally slows reaction times and causes foolish errors due to inattention. In addition to the most common cause of fatigue, insufficient rest and loss of sleep, the pressure of business, financial worries and family problems, can be contributing factors. If your fatigue is a factor prior to a given flight, don’t fly. To prevent fatigue effects during long flights, keep mentally active by making ground checks and radio-navigation position plots.

HYPOXIA

Hypoxia in simple terms is a lack of sufficient oxygen to keep the brain and other body tissues functioning properly. There is wide individual variation in susceptibility to hypoxia. In addition to progressively insufficient oxygen at higher altitudes, anything interfering with the blood’s ability to carry oxygen can contribute to hypoxia (anemias, carbon monoxide, and certain drugs). Also, alcohol and various drugs decrease the brain’s tolerance to hypoxia. Your body has no built-in alarm system to let you know when you are not getting enough oxygen. It is impossible to predict when or where hypoxia will occur during a flight, or how it will manifest itself. A major early symptom of hypoxia is an increased sense of well-being (referred to as euphoria). This progresses to slow reactions, impaired thinking ability, unusual fatigue, and dull headache feeling.

ISSUED 6-94
SECTION X
SAFETY INFORMATION

Mooney Model M20R

Symptoms are slow but progressive, insidious in onset, and are most marked at altitudes starting above 10,000 feet. Night vision, however, can be impaired starting at altitudes lower than 10,000 feet. Heavy smokers may experience early symptoms of hypoxia at altitudes lower than non-smokers. Use oxygen on flights above 10,000 feet and at any time when symptoms appear.

HYPERVENTILATION

Hyperventilation or over-breathing, is a disturbance of respiration that may occur in individuals as a result of emotional tension or anxiety. Under conditions of emotional stress, fright, or pain, breathing rate may increase, causing increased lung ventilation, although the carbon dioxide output of the body cells does not increase. As a result, carbon dioxide is "washed out" of the blood. The most common symptoms of hyperventilation are: dizziness; hot and cold sensations; tingling of the hands, legs and feet; tachy; nausea; sleepiness; and finally unconsciousness.

Should symptoms occur that cannot definitely be identified as either hypoxia or hyperventilation try three or four deep breaths of oxygen. The symptoms should improve markedly if the condition was hypoxia (recovery from hypoxia is rapid). If the symptoms persist, discontinue use of oxygen; consciously slow your breathing rate until symptoms clear; then resume normal breathing rate. Normal breathing can be aided by talking aloud.

ALCOHOL

Common sense and scientific evidence dictate that you not fly as a crew member while under the influence of alcohol. Even small amounts of alcohol in the human system can adversely affect judgment and decision making abilities. FAR 91.11 states "(a) No person may act as a crew member-(i) within 8 hours after the consumption of any alcoholic beverage."

Tests indicate that as a general rule, 2 ounces (.08 liters) of alcohol at 15,000 feet produce the same adverse effects as 6 ounces (.18 liters) at sea level. In other words, the higher you get, "the higher you get".

DRUGS

Self-medication or taking medicine in any form when you are flying can be extremely hazardous. Even simple home or over-the-counter remedies drugs such as aspirin, antihistamines, cold tablets, cough mixtures, laxatives, tranquillizers, and appetite suppressors, may seriously impair the judgment and coordination needed while flying. The safest rule is to TAKE NO MEDICINE before or while flying, except on the advice of your Aviation Medical Examiner.

SCUBA DIVING

Flying shortly after any prolonged scuba diving could be dangerous. Under the increased pressure of the water, excess nitrogen is absorbed into your system. If sufficient time has not elapsed prior to takeoff for your system to rid itself of this excess gas, you may experience the bends at altitudes even under 10,000 feet, where most light planes fly.
ADDITIONAL INFORMATION

In addition to the coverage of subjects in this section, the National Transportation Safety Board and the FAA periodically issue general aviation pamphlets concerning aviation safety, and in greater detail. These can be obtained at FAA Offices, Weather Stations, Flight Service Stations, or Airport Facilities. These are very good sources of information and are highly recommended for study. Some of these are titled:

- Airman's Information Manual
- 12 Golden Rules for Pilots
- Weather or Not
- Disorientation
- Plane Sense
- Weather Info Guide for Pilots
- Wake Turbulence
- Don't Trust to Luck, Trust to Safety
- Thunderstorm - TRW
- IFR-VFR, Either Way Disorientation Can be Fatal

MANUFACTURER'S INFORMATION

See following applicable pages of information that may have been inserted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>.10-2</td>
</tr>
<tr>
<td>GENERAL</td>
<td>.10-3</td>
</tr>
<tr>
<td>GENERAL SOURCES OF INFORMATION</td>
<td>.10-3</td>
</tr>
<tr>
<td>RULES AND REGULATIONS</td>
<td>.10-4</td>
</tr>
<tr>
<td>FAR, PART 39, AIRWORTHINESS DIRECTIVES</td>
<td>.10-4</td>
</tr>
<tr>
<td>AIRMAN INFORMATION, ADVISORIES, AND NOTICES, FAA AIRMAN'S INFORMATION MANUAL</td>
<td>.10-4</td>
</tr>
<tr>
<td>ADVISORY INFORMATION</td>
<td>.10-4</td>
</tr>
<tr>
<td>GENERAL INFORMATION ON SPECIFIC TOPICS</td>
<td>.10-5</td>
</tr>
<tr>
<td>FLIGHT PLANNING</td>
<td>.10-5</td>
</tr>
<tr>
<td>INSPECTIONS-MAINTENANCE</td>
<td>.10-5</td>
</tr>
<tr>
<td>SPECIAL CONDITIONS CAUTIONARY NOTICE</td>
<td>.10-5</td>
</tr>
<tr>
<td>WALK AROUND INSPECTIONS</td>
<td>10-6</td>
</tr>
<tr>
<td>COCKPIT CHECKS</td>
<td>.10-6</td>
</tr>
<tr>
<td>FLIGHT OPERATIONS</td>
<td>.10-6</td>
</tr>
<tr>
<td>GENERAL</td>
<td>.10-6</td>
</tr>
<tr>
<td>TURBULENT WEATHER</td>
<td>.10-6</td>
</tr>
<tr>
<td>FLIGHT IN TURBULENT AIR</td>
<td>.10-6</td>
</tr>
<tr>
<td>MOUNTAIN FLYING</td>
<td>.10-7</td>
</tr>
<tr>
<td>VFR-LOW CEILINGS</td>
<td>.10-7</td>
</tr>
<tr>
<td>VFR AT NIGHT</td>
<td>.10-7</td>
</tr>
<tr>
<td>VERTIGO-DISORIENTATION</td>
<td>.10-7</td>
</tr>
<tr>
<td>STALLS, SPINS AND SLOW FLIGHT</td>
<td>.10-8</td>
</tr>
<tr>
<td>STANDARD PROCEDURE - SPIN RECOVERY</td>
<td>.10-8</td>
</tr>
<tr>
<td>VORTICES-WAKE TURBULENCE</td>
<td>.10-8</td>
</tr>
<tr>
<td>TAKE-OFF AND LANDING CONDITIONS</td>
<td>.10-9</td>
</tr>
<tr>
<td>MEDICAL FACTS FOR PILOTS</td>
<td>.10-9</td>
</tr>
<tr>
<td>GENERAL</td>
<td>.10-9</td>
</tr>
<tr>
<td>FATIGUE</td>
<td>.10-9</td>
</tr>
<tr>
<td>HYPOXIA</td>
<td>.10-9</td>
</tr>
<tr>
<td>HYPERVENTILATION</td>
<td>.10-9</td>
</tr>
<tr>
<td>ALCOHOL</td>
<td>.10-10</td>
</tr>
<tr>
<td>DRUGS</td>
<td>.10-10</td>
</tr>
<tr>
<td>SCUBA DIVING</td>
<td>.10-10</td>
</tr>
<tr>
<td>ADDITIONAL INFORMATION</td>
<td>.10-11</td>
</tr>
<tr>
<td>MANUFACTURER'S INFORMATION</td>
<td>.10-11</td>
</tr>
</tbody>
</table>
INTRODUCTION

The best of engineering know-how and manufacturing craftsmanship have gone into the design and building of your Mooney aircraft. Like any high performance airplane, it operates most efficiently and safely in the hands of a skilled pilot.

We urge you to be thoroughly familiar with the contents of your operating manuals, placards, and check list to insure maximum utilization of your airplane. When the airplane has changed ownership, some of these may have been misplaced. If any are missing, replacements should be obtained from any Mooney Service Center as soon as possible.

For your added protection and safety, we have added this special section to the Pilot's Operating Handbook to refresh your knowledge of a number of safety subjects. You should review these subjects periodically.

Topics in this section are mostly excerpts from FAA Documents and other articles pertaining to the subject of safe flying. They are not limited to any particular make or model airplane and do not replace instructions for particular types of airplanes.

Your Mooney aircraft was designed and built to provide you with many years of safe and efficient transportation. By maintaining it properly and flying it prudently, you should realize its full potential.
Flying is one of the safest modes of travel. Remarkable safety records are being established each year. As a pilot you are responsible to yourself, your relatives, to those who travel with you, to other pilots and to ground personnel to fly wisely and safely.

The following materials in this Safety section covers several subjects in limited detail. Here are some condensed DO’s and DON’TS.

--- DO'S ---

1. Be thoroughly familiar with your airplane and be current in it, or get a check ride.
2. Pre-plan all aspects of your flight—including weather. --- FLY YOUR PLAN ---
3. Use services available—FSS, Weather Bureau, etc.
4. Pre-flight your airplane thoroughly.
5. Use your check lists.
6. Have more than enough fuel for takeoff, the planned trip, and adequate reserve.
7. Be sure your weight loading and C.G. are within limits.
8. Be sure articles and baggage are secured.
9. Check freedom of all controls.
10. Maintain appropriate airspeed in takeoff, climb, descent and landing.
11. Avoid other aircraft wake turbulence.
12. Switch fuel tanks before engine starvation occurs.
13. Practice engine out, emergency landing gear extension and other emergency procedures at safe altitude; preferably with a check pilot.
14. Use caution in mountainous terrain.
15. Keep your airplane in good mechanical condition.
16. Stay informed and alert, fly in a sensible manner.

--- DON'TS ---

1. Don’t take off with frost, ice or snow on the aircraft surfaces.
2. Don’t take off with less than minimum recommended fuel, plus reserves.
3. Don’t fly in a reckless, show off, careless manner.
4. Don’t fly in thunderstorms or severe weather.
5. Don’t fly in possible icing conditions. If you encounter icing conditions, alter altitude or course to minimize exposure.
6. Don’t apply controls abruptly or with high forces that could exceed design loads of the airplane.
7. Don’t fly when physically or mentally exhausted.
8. DON’T TRUST TO LUCK.

GENERAL SOURCES OF INFORMATION

There is a wealth of information available to the pilot created for the sole purpose of making your flying easier, faster, and safer. Take advantage of this knowledge and be prepared for an emergency in the remote event that one should occur. You as a pilot also have certain responsibilities under government regulations. These are designed for your own protection. Compliance is not only beneficial but mandatory.

ISSUED 6 - 94
RULES AND REGULATIONS

Federal Aviation regulations, Part 91, General Operating and Flight Rules, is a document of law governing operation of aircraft and the owner's and pilot's responsibilities.

This document covers such subjects as:

Responsibilities and authority of the pilot in command
Certificates required
Liquor and drugs
Flight plans
Pre-flight action
Fuel requirements
Flight rules
Maintenance, preventative maintenance, alterations, inspections and
maintenance records

These are only some of the topics covered. It is the owner's and pilot's responsibility to be thoroughly familiar with all items in FAR Part 91 and to follow them.

FEDERAL AVIATION REGULATIONS, PART 39 - AIRWORTHINESS DIRECTIVES

This document specifies that no person may operate a product to which an airworthiness directive issued by the FAA applies, except in accordance with the requirements of that airworthiness directive.

AIRMAN INFORMATION, ADVISORIES, AND NOTICES, FAA AIRMAN'S INFORMATION MANUAL

This document contains a wealth of pilot information for nearly all realms of flight, navigation, ground procedures and medical information. Among the subjects are:

Controlled Air Space
Services Available to Pilots
Radio Phraseology and Technique
Airport Operations
Clearances and Separations
Pre-flight
Departures - IFR
Enroute - IFR
Arrival - IFR
Emergency Procedures
Weather
Wake Turbulence
Medical Facts for Pilots
Bird Hazards
Good Operating Practices
Airport Location Directory

We urge all pilots to be thoroughly familiar with and use the information in this manual.

ADVISORY INFORMATION

Airmen can subscribe to services to obtain FAA NOTAMS and Airman Advisories, and these are also available at FAA Flight Service Stations. NOTAMS are documents that have information of a time-critical nature that would affect a pilot's decision to make a flight; for example, an airport closed, terminal radar out of service, enroute navigational aids out of service, etc.
FLIGHT PLANNING

FAR Part 91 requires that each pilot in command, before beginning a flight, familiarize himself with all available information concerning that flight.

All pilots are urged to obtain a complete preflight briefing. This would consist of weather; local, enroute and destination, plus alternates, enroute navigational information. Also airport runways active, length of runways, takeoff and landing distances for the airplane for conditions expected should be known.

The prudent pilot will review his planned enroute track and stations and make a list for quick reference. It is strongly recommended a flight plan be filed with Flight Service Stations even though the flight may be VFR. Also, advise Flight Service Stations of changes or delays of one hour or more and remember to close the flight plan at destination.

The pilot must be completely familiar with the performance of the airplane and performance data in the airplane manuals and placards. The resultant effect of temperature and pressure altitude must be taken into account in determining performance if not accounted for on the charts. Applicable FAA manuals must be aboard the airplane at all times including the weight and balance forms and equipment lists.

The airplane must be loaded so as not to exceed the weight and the weight and balance loading center of gravity (c.g.) limitations. Also, that at least minimum fuel for takeoff is aboard and sufficient for the trip, plus reserves. Oil in the engines should be checked and filled as required.

INSPECTIONS - MAINTENANCE

In addition to maintenance inspections and preflight information required by FAR Part 91, a complete pre-flight inspection is imperative. It is the responsibility of the owner and operator to assure that the airplane is maintained in an airworthy condition and proper maintenance records are kept.

While the following items cannot substitute for the pre-flight specified for each type of airplane, they will serve as reminders of general items that should be checked.

SPECIAL CONDITIONS CAUTIONARY NOTICE

Airplanes operated for Air Taxi or other than normal operation and airplanes operated in humid tropics or cold and damp climates, etc., may need more frequent inspections for wear, corrosion and or lack of lubrication. In these areas periodic inspections should be performed until the operator can set his own inspection periods based on experience.

| NOTE |

The required periods do not constitute a guarantee that the item will reach the period without malfunction, as the aforementioned factors cannot be controlled by the manufacturer.

Corrosion, and its effects, must be treated at the earliest possible opportunity. A clean dry surface is virtually immune to corrosion. Make sure that all drain holes remain unobstructed. Protective films and sealants help to keep corrosive agents from contacting metallic surfaces. Corrosion inspections should be made most frequently under high-corrosion-risk operating conditions, such as in regions of heavy airborne salt concentrations (e.g., near the sea) and high-humidity areas (e.g., tropical regions).
WALK AROUND INSPECTIONS

All airplane surfaces free of ice, frost or snow.
Tires properly inflated.
All external locks, covers and tie downs removed.
Fuel sumps drained.
Fuel quantity, adequate for trip, plus reserve, (visually checked) and access doors secured.
Oil quantity checked and access doors secured.
Check general condition of airplane, engine, propeller, exhaust stacks, etc.
All external doors secured.

COCKPIT CHECKS

Flashlight available.
Required documents on board.
Use the check list.
All internal control locks removed (if installed).
Check freedom of controls.
Cabin and baggage door properly closed.
Seat belts and shoulder harnesses fastened.
Passengers briefed.
Engine and propeller operating satisfactorily.
All engine gauges checked for proper readings.
Fuel selector in proper position.
Fuel quantity checked by gauges.
Altimeter setting checked.

FLIGHT OPERATIONS

GENERAL

The pilot should be thoroughly familiar with all information published by the manufacturer concerning the airplane. The pilot is required by FAA to operate in accordance with the FAR's and the FAA Approved Airplane Flight Manual and/or placards installed.

TURBULENT WEATHER

A complete weather briefing prior to beginning a flight is the start of assurance of a safe trip. Updating of weather information enroute is another assurance. However, the wise pilot also knows weather conditions change quickly at times and treats weather forecasting as professional advice rather than as absolute fact. He obtains all the advice he can, but still stays alert through knowledge of weather changes, observations, and conditions.

Plan the flight to avoid areas of severe turbulence and thunderstorms. It is not always possible to detect individual storm areas or find the in between clear areas.

Thunderstorms, squall lines and violent turbulence should be regarded as extremely dangerous and MUST be avoided. Hail and tornadic wind velocities can be encountered in thunderstorms that can destroy any airplane, just as tornados destroy nearly everything in their path on the ground.

A roll cloud ahead of a squall line or thunderstorm is visible evidence of violent turbulence, however, the absence of a roll cloud should not be interpreted as denoting the lack of turbulence.

FLIGHT IN TURBULENT AIR

Even though flight in severe turbulence is to be avoided, flight in turbulent air may be encountered under certain conditions. Flying through turbulent air presents two basic problems, to both of which the answer is PROPER AIRSPEED. On the one hand, if you maintain an excessive airspeed, you run the risk of structural damage or failure; on the other hand, if your airspeed is too low, you may stall. If turbulence encountered in cruise or descent becomes uncomfortable to the pilot or passengers, the best procedure is to reduce speed to the maneuvering speed, which is listed in the Limitations Section of the FAA Approved Airplane Flight Manual and Pilots Operating Handbook. This speed gives the best
assurance of avoiding excessive stress loads, and at the same time providing margin against inadvertent stalls due to gusts.

Beware of overcontrolling in attempting to correct for changes in altitude; applying control pressure abruptly will build up G-forces rapidly and could cause damaging structural stress loads. You should watch particularly your angle of bank, making turns as wide and shallow as possible, and be equally cautious in applying forward or back pressure to keep the nose level. Maintain straight and level attitude in either up or down drafts. Use trim sparingly to avoid being grossly mistrimmed as the vertical air columns change velocity and direction.

MOUNTAIN FLYING
Avoid flight at low altitudes over mountainous terrain, particularly near the lee slopes.

-OBSERVE PUBLISHED MINIMUM ENROUTE ALTITUDES (MEA). If the wind velocity near the level of the ridge is in excess of 25 knots and approximately perpendicular to the ridge, mountain wave conditions are likely over and near the lee slopes. If the wind velocity at the level of the ridge exceeds 50 knots, a strong mountain wave is probable with strong up and down drafts and severe or extreme turbulence. The worst turbulence will be encountered in and below the rotor zone which is usually 8 to 10 miles downwind from the ridge. This zone is characterized by the presence of "roll clouds" if sufficient moisture is present; alto cumulus standing lenticular clouds are also visible signs that a mountain wave exists, but their presence is likewise dependent on moisture. Mountain wave turbulence can, of course, occur in dry air and the absence of such clouds should not be taken as any assurance that mountain wave turbulence will not be encountered. A mountain wave downdraft may exceed the climb capability of your airplane.

-- AVOID MOUNTAIN WAVE DOWNDRAFTS --

VFR - LOW CEILINGS
If you are not instrument rated, avoid "VFR On Top" and "Special VFR". Being caught above an undercast when an emergency descent is required (or at destination) is an extremely hazardous position for the VFR pilot.

Accepting a clearance out of certain airport control zones with no minimum ceiling and one-mile visibility as permitted with "Special VFR" is not a recommended practice for VFR pilots.

Avoid areas of low ceilings and restricted visibility unless you are instrument proficient and have an instrument equipped airplane. Then proceed with caution and have planned alternates.

VFR - AT NIGHT
When flying VFR at night, in addition to the altitude appropriate for the direction of flight, pilots should maintain a safe minimum altitude as dictated by terrain, obstacles such as TV towers, or communities in the area flown. This is especially true in mountainous terrain, where there is usually very little ground reference and absolute minimum clearance is 2,000 feet. Don't depend on your being able to see obstacles in time to miss them. Flight on dark nights over sparsely populated country can be almost the same as IFR and should be avoided by untrained pilots.

VERTIGO - DISORIENTATION
Disorientation can occur in a variety of ways. During flight, inner ear balancing mechanisms are subjected to varied forces not normally experienced on the ground. This combined with loss of outside visual reference can cause vertigo. False interpretations (illusions) result and may confuse the pilot's conception of the attitude and position of his airplane.

Under VFR conditions the visual sense, using the horizon as a reference, can override the illusions. Under low visibility conditions (night, fog, clouds, haze, etc.) the illusions predominate. Only through awareness of these illusions, and proficiency in instrument flight procedures, can an airplane be operated safely in a low visibility environment.
Flying in fog, dense haze or dust, cloud banks, or very low visibility, with strobe lights, and particularly rotating beacons turned on frequently causes vertigo. They should be turned off in these conditions, particularly at night.

All pilots should check the weather and use good judgment in planning flights. The VFR pilot should use extra caution in avoiding low visibility conditions.

Motion sickness often precedes or accompanies disorientation and may further jeopardize the flight.

STALLS, SPINS AND SLOW FLIGHT

Stalls, and slow flight should be practiced at safe altitudes to allow for recovery. Any of these maneuvers should be performed at an altitude in excess of 6,000 feet above ground level. Spins may be dangerous and should be avoided. In fact, most airplanes are placarded against intentional spins. Spins are preceded by stalls. A prompt and decisive stall recovery protects against inadvertent spins. All airplanes are required to have flight characteristics that give adequate advance warning of an impending stall or they must be equipped with an artificial stall warning device. Keep the artificial system in good working order. Do not operate the airplane with the device made inoperative by the use of circuit breakers or other means.

Stalls should be practiced at safe altitudes for ample recovery. Should a spin be encountered inadvertently, spin recovery should be initiated immediately.

As stall attitude is approached, be alert. Take prompt corrective action to avoid the stall or if you are practicing stalls, react the moment the stall occurs. The following is suggested:

1. Do not carry passengers. Be certain that the airplane's center of gravity is as far forward as possible. Forward CG aids spin recovery.
2. Be certain that both student pilot and instructor pilot have a full set of operable controls.
3. Conduct such practice at altitudes in excess of 6,000 ft. above ground level.

Remember that an airplane at or near traffic pattern altitude probably will not recover from a spin before impact with the ground. When descending to traffic pattern altitude and during operation in the traffic pattern and approach, maintain a safe margin above stall speed. During takeoff or go-around, be especially careful to avoid departure stalls associated with turns at low speed. Maintain speeds recommended in this handbook (Section II & V).

STANDARD PROCEDURE FOR SPIN RECOVERY

In the event of an inadvertent spin, the following recovery procedure should be used:

- **Throttle**: RETARD to IDLE
- **Ailerons**: NEUTRAL
- **Rudder**: Apply FULL RUDDER opposite the direction of spin.
- **Control Wheel**: FORWARD of neutral in a brisk motion to break stall. Additional FORWARD elevator control may be required if rotation does not stop.
- **Flaps (if extended)**: RETRACT as soon as possible
- **Rudder**: NEUTRALIZE when spin stops.
- **Control Wheel**: Smoothly MOVE AFT to bring the nose up to a level flight attitude after spin has stopped.

VORTICES - WAKE TURBULENCE

Every airplane generates wakes of turbulence while in flight. Part of this is from the propeller or jet engine and part from the wing tip vortices. The larger and heavier the airplane the more pronounced wake turbulence will be. Wing tip vortices from large heavy airplanes are very severe at close range, degenerating with time, wind and space. These are rolling in nature from each wing tip. In test, vortex velocities of 133 knots have been recorded. Exhaust velocities from large airplanes at takeoff have been measured at 25 mph, 2100 feet behind medium, large airplanes.

Encountering the rolling effect of wing tip vortices within two minutes or less after passage of large airplanes is hazardous to light airplanes. This roll effect can exceed the maximum counter roll obtainable in an airplane.
The turbulent areas may remain for as long as three minutes or more, depending on wind conditions, and may extend several miles behind the airplane. Plan to fly slightly above or to the upwind side of the other airplane's flight path.

Because of the wide variety of conditions that can be encountered, there is no set rule to follow to avoid wake turbulence in all situations. However, the Airman's Information Manual goes into considerable detail for a number of wake turbulence avoidance procedures. Use prudent judgment and allow ample clearance time and space following or crossing the wake turbulence of other airplanes in all takeoff, climb out, approach and landing operations. Be observant of wake turbulence from all aircraft, regardless of size.

The Airman's Information Manual contains a section on wake turbulence. FAA Advisory Circular AC 90-230 is also recommended reading.

TAKE-OFF AND LANDING CONDITIONS

When taking off on runways covered with water or freezing slush, the landing gear should remain extended for approximately ten seconds longer than normal, allowing the wheels to spin and dissipate the freezing moisture. The landing gear should then be cycled up, then down, wait approximately five seconds and then retract again. Caution must be exercised to insure that the entire operation is performed below Maximum Landing Gear Operating Airspeed.

Use caution when landing on runways that are covered by water or slush which cause hydroplaning (aquaplaning), a phenomenon that renders braking and steering ineffective because of the lack of sufficient surface friction. Snow and ice covered runways are also hazardous. The pilot should be alert to the possibility of the brakes freezing.

Use caution when taking off or landing in gusty winds. Be aware of special wind conditions caused by buildings or other obstructions located near runway in a crosswind pattern.

MEDICAL FACTS FOR PILOTS

GENERAL

Modern industry's record in providing reliable equipment is very good. When the pilot enters the airplane, he becomes an integral part of the man-machine system. He is just as essential to a successful flight as the control surfaces. To ignore the pilot in pre-flight planning would be as senseless as failing to inspect the integrity of the control surfaces or any other vital part of the machine. The pilot himself has the responsibility for determining his reliability prior to entering the airplane for flight.

While piloting an airplane, an individual should be free of conditions which are harmful to alertness, ability to make correct decisions, and rapid reaction time.

FATIGUE

Fatigue generally slows reaction times and causes foolish errors due to inattention. In addition to the most common cause of fatigue, insufficient rest and loss of sleep, the pressure of business, financial worries and family problems, can be contributing factors. If your fatigue is a factor prior to a given flight, don't fly. To prevent fatigue effects during long flights, keep mentally active by making ground checks and radio-navigation position plots.

HYPOXIA

Hypoxia in simple terms is a lack of sufficient oxygen to keep the brain and other body tissues functioning properly. There is wide individual variation in susceptibility to hypoxia. In addition to progressively insufficient oxygen at higher altitudes, anything interfering with the blood's ability to carry oxygen can contribute to hypoxia (anemias, carbon monoxide, and certain drugs). Also, alcohol and various drugs decrease the brain's tolerance to hypoxia. Your body has no built in alarm system to let you know when you are not getting enough oxygen. It is impossible to predict when or where hypoxia will occur during a flight, or how it will manifest itself. A major early symptom of hypoxia is an increased sense of well-being (referred to as euphoria). This progresses to slow reactions, impaired thinking ability, unusual fatigue, and dull headache feeling.
Symptoms are slow but progressive, insidious in onset, and are most marked at altitudes starting above 10,000 feet. Night vision, however, can be impaired starting at altitudes lower than 10,000 feet. Heavy smokers may experience early symptoms of hypoxia at altitudes lower than non-smokers. Use oxygen on flights above 10,000 feet and at any time when symptoms appear.

HYPERVENTILATION

Hyperventilation or over-breathing, is a disturbance of respiration that may occur in individuals as a result of emotional stress, fright, or pain, breathing rate may increase, causing increased lung ventilation, although the carbon dioxide output of the body cells does not increase. As a result, carbon dioxide is "washed out" of the blood. The most common symptoms of hyperventilation are: dizziness; hot and cold sensations; tingling of the hands, legs and feet; tetany; nausea; sleepiness; and finally unconsciousness.

Should symptoms occur that cannot definitely be identified as either hypoxia or hyperventilation try three or four deep breaths of oxygen. The symptoms should improve markedly if the condition was hypoxia (recovery from hypoxia is rapid). If the symptoms persist, discontinue use of oxygen; consciously slow your breathing rate until symptoms clear; then resume normal breathing rate. Normal breathing can be aided by talking aloud.

ALCOHOL

Common sense and scientific evidence dictate that you not fly as a crew member while under the influence of alcohol. Even small amounts of alcohol in the human system can adversely affect judgment and decision making abilities. FAR 91.11 states "(a) No person may act as a crew member-(1) within 8 hours after the consumption of any alcoholic beverage."

Tests indicate that as a general rule, 2 ounces (.06 liters) of alcohol at 15,000 feet produce the same adverse effects as 6 ounces (.18 liters) at sea level. In other words, the higher you get, "the higher you get".

DRUGS

Self-medication or taking medicine in any form when you are flying can be extremely hazardous. Even simple home or over-the-counter remedies drugs such as aspirin, antihistamines, cold tablets, cough mixtures, laxatives, tranquilizers, and appetite suppressors, may seriously impair the judgment and coordination needed while flying. The safest rule is to TAKE NO MEDICINE before or while flying, except on the advice of your Aviation Medical Examiner.

SCUBA DIVING

Flying shortly after any prolonged scuba diving could be dangerous. Under the increased pressure of the water, excess nitrogen is absorbed into your system. If sufficient time has not elapsed prior to takeoff for your system to rid itself of this excess gas, you may experience the bends at altitudes even under 10,000 feet, where most light planes fly.
ADDITIONAL INFORMATION

In addition to the coverage of subjects in this section, the National Transportation Safety Board and the F.A.A. periodically issue general aviation pamphlets concerning aviation safety, and in greater detail. These can be obtained at FAA Offices, Weather Stations, Flight Service Stations, or Airport Facilities. These are very good sources of information and are highly recommended for study. Some of these are titled:

- Airman’s Information Manual
- 12 Golden Rules for Pilots
- Weather or Not
- Disorientation
- Plane Sense
- Weather Info Guide for Pilots
- Wake Turbulence
- Don’t Trust to Luck, Trust to Safety
- Thunderstorm - TRW
- IFR-VFR , Either Way **Disorientation Can be Fatal**

MANUFACTURER’S INFORMATION

See following applicable pages of information that may have been inserted.